論文の概要: RURANET++: An Unsupervised Learning Method for Diabetic Macular Edema Based on SCSE Attention Mechanisms and Dynamic Multi-Projection Head Clustering
- arxiv url: http://arxiv.org/abs/2502.20224v2
- Date: Fri, 07 Mar 2025 08:17:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:23:16.876197
- Title: RURANET++: An Unsupervised Learning Method for Diabetic Macular Edema Based on SCSE Attention Mechanisms and Dynamic Multi-Projection Head Clustering
- Title(参考訳): RANET++:SCSEアテンション機構と動的マルチプロジェクションヘッドクラスタリングに基づく糖尿病黄斑浮腫の教師なし学習法
- Authors: Wei Yang, Yiran Zhu, Jiayu Shen, Yuhan Tang, Chengchang Pan, Hui He, Yan Su, Honggang Qi,
- Abstract要約: RURANET++は、糖尿病黄斑浮腫(DME)の教師なし学習に基づく自動診断システムである
特徴処理中、トレーニング済みのGoogLeNetモデルは網膜画像から深い特徴を抽出し、PCAベースの次元を50次元に減らして計算効率を向上する。
実験の結果,複数の測定値に対して優れた性能を示し,最大精度(0.8411),精度(0.8593),リコール(0.8411),F1スコアを異常なクラスタリング品質で達成した。
- 参考スコア(独自算出の注目度): 13.423253964156117
- License:
- Abstract: Diabetic Macular Edema (DME), a prevalent complication among diabetic patients, constitutes a major cause of visual impairment and blindness. Although deep learning has achieved remarkable progress in medical image analysis, traditional DME diagnosis still relies on extensive annotated data and subjective ophthalmologist assessments, limiting practical applications. To address this, we present RURANET++, an unsupervised learning-based automated DME diagnostic system. This framework incorporates an optimized U-Net architecture with embedded Spatial and Channel Squeeze & Excitation (SCSE) attention mechanisms to enhance lesion feature extraction. During feature processing, a pre-trained GoogLeNet model extracts deep features from retinal images, followed by PCA-based dimensionality reduction to 50 dimensions for computational efficiency. Notably, we introduce a novel clustering algorithm employing multi-projection heads to explicitly control cluster diversity while dynamically adjusting similarity thresholds, thereby optimizing intra-class consistency and inter-class discrimination. Experimental results demonstrate superior performance across multiple metrics, achieving maximum accuracy (0.8411), precision (0.8593), recall (0.8411), and F1-score (0.8390), with exceptional clustering quality. This work provides an efficient unsupervised solution for DME diagnosis with significant clinical implications.
- Abstract(参考訳): 糖尿病患者の合併症である糖尿病黄斑浮腫(DME)は、視覚障害と視覚障害の主要な原因となっている。
深層学習は医用画像解析において顕著な進歩を遂げているが、従来のDME診断はいまだに広範な注釈付きデータと主観的眼科医の評価に依存しており、実用的応用は制限されている。
そこで我々は,教師なし学習に基づく自動DME診断システムRURANET++を提案する。
このフレームワークは,適応型U-Netアーキテクチャと組込み空間およびチャネルスキーズ・アンド・エキサイティング(SCSE)アテンション機構を組み込んで,病変の特徴抽出を強化する。
特徴処理中、トレーニング済みのGoogLeNetモデルは網膜画像から深い特徴を抽出し、PCAベースの次元を50次元に減らして計算効率を向上する。
特に,マルチプロジェクションヘッドを用いたクラスタリングアルゴリズムを導入し,類似度閾値を動的に調整しながらクラスタの多様性を明示的に制御し,クラス内一貫性とクラス間識別を最適化する。
実験の結果,最大精度(0.8411),精度(0.8593),リコール(0.8411),F1スコア(0.8390),異常クラスタリング品質(0.8390)が得られた。
本研究は、DME診断に重要な臨床的意味を持つ効率的な教師なしソリューションを提供する。
関連論文リスト
- CAVE-Net: Classifying Abnormalities in Video Capsule Endoscopy [0.1937002985471497]
複雑な画像データセットを解析する際の診断精度を向上させるために,アンサンブルに基づくアプローチを提案する。
各モデルのユニークな特徴抽出機能を活用し、全体的な精度を向上させる。
これらの手法を用いることで、提案フレームワークであるCAVE-Netは、ロバストな特徴識別と、より優れた分類結果を提供する。
論文 参考訳(メタデータ) (2024-10-26T17:25:08Z) - Integrating Deep Feature Extraction and Hybrid ResNet-DenseNet Model for Multi-Class Abnormality Detection in Endoscopic Images [0.9374652839580183]
本研究の目的は、血管拡張症、出血、潰瘍を含む10種類のGI異常分類の同定を自動化することである。
提案したモデルは、よく構造化されたデータセットで全体の94%の精度を達成する。
論文 参考訳(メタデータ) (2024-10-24T06:10:31Z) - Enhancing Eye Disease Diagnosis with Deep Learning and Synthetic Data Augmentation [0.0]
本稿では,糖尿病網膜症の早期発見と管理を目的としたアンサンブル学習手法を提案する。
提案したモデルはAPTOSデータセット上でテストされ、以前のモデルと比較して検証精度(99%)の優位性を示している。
論文 参考訳(メタデータ) (2024-07-25T04:09:17Z) - Detection and Classification of Diabetic Retinopathy using Deep Learning
Algorithms for Segmentation to Facilitate Referral Recommendation for Test
and Treatment Prediction [0.0]
本研究は糖尿病網膜症(DR)の臨床的課題について考察する。
提案手法は、畳み込みニューラルネットワーク(CNN)を用いたトランスファーラーニングを利用して、単一の基礎写真を用いた自動DR検出を行う。
Jaccard、F1、リコール、精度、精度の高評価スコアは、網膜病理評価における診断能力を高めるモデルの可能性を示している。
論文 参考訳(メタデータ) (2024-01-05T11:19:24Z) - An Interpretable Machine Learning Model with Deep Learning-based Imaging
Biomarkers for Diagnosis of Alzheimer's Disease [4.304406827494684]
本研究では,EBMの強度と,深層学習に基づく特徴抽出を用いた高次元イメージングデータを組み合わせたフレームワークを提案する。
提案手法は,深層学習機能の代わりにボリュームバイオマーカーを用いたESMモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-08-15T13:54:50Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
糖尿病網膜症における訓練方法の違いによる影響を比較検討した。
本稿では,定量的性能,学習した特徴表現の統計,解釈可能性,画像歪みに対する頑健性など,さまざまな側面について検討する。
以上の結果から,ImageNet事前学習モデルでは,画像歪みに対する性能,一般化,堅牢性が著しく向上していることが示唆された。
論文 参考訳(メタデータ) (2021-06-25T08:32:45Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Performance of Dual-Augmented Lagrangian Method and Common Spatial
Patterns applied in classification of Motor-Imagery BCI [68.8204255655161]
運動画像に基づく脳-コンピュータインタフェース(MI-BCI)は、神経リハビリテーションのための画期的な技術になる可能性がある。
使用する脳波信号のノイズの性質のため、信頼性の高いBCIシステムは特徴の最適化と抽出のために特別な手順を必要とする。
論文 参考訳(メタデータ) (2020-10-13T20:50:13Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。