論文の概要: CapsuleNet: A Deep Learning Model To Classify GI Diseases Using EfficientNet-b7
- arxiv url: http://arxiv.org/abs/2410.19151v1
- Date: Thu, 24 Oct 2024 20:43:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:35:53.430667
- Title: CapsuleNet: A Deep Learning Model To Classify GI Diseases Using EfficientNet-b7
- Title(参考訳): CapsuleNet: 効率的なNet-b7を使ってGI病を分類するディープラーニングモデル
- Authors: Aniket Das, Ayushman Singh, Nishant, Sharad Prakash,
- Abstract要約: Capsule Vision 2024 Challengeのために開発された深層学習モデルであるCapsuleNetについて述べる。
我々のモデルは、事前訓練されたEfficientNet-b7バックボーンを活用し、分類のための追加レイヤを調整し、PRELUアクティベーション関数で最適化する。
以上の結果から,CapsuleNetのようなCNNベースのモデルでは,特に推定時間が重要な因子である場合,GIトラクション病の分類に有効な解が得られることが示唆された。
- 参考スコア(独自算出の注目度): 1.2499537119440245
- License:
- Abstract: Gastrointestinal (GI) diseases represent a significant global health concern, with Capsule Endoscopy (CE) offering a non-invasive method for diagnosis by capturing a large number of GI tract images. However, the sheer volume of video frames necessitates automated analysis to reduce the workload on doctors and increase the diagnostic accuracy. In this paper, we present CapsuleNet, a deep learning model developed for the Capsule Vision 2024 Challenge, aimed at classifying 10 distinct GI abnormalities. Using a highly imbalanced dataset, we implemented various data augmentation strategies, reducing the data imbalance to a manageable level. Our model leverages a pretrained EfficientNet-b7 backbone, tuned with additional layers for classification and optimized with PReLU activation functions. The model demonstrated superior performance on validation data, achieving a micro accuracy of 84.5% and outperforming the VGG16 baseline across most classes. Despite these advances, challenges remain in classifying certain abnormalities, such as Erythema. Our findings suggest that CNN-based models like CapsuleNet can provide an efficient solution for GI tract disease classification, particularly when inference time is a critical factor.
- Abstract(参考訳): 消化管内視鏡検査(Capsule Endoscopy, CE)は, 多数のGI画像の取得による非侵襲的診断法である。
しかし,ビデオフレームの量が多ければ多いほど,医師の作業量を減らし,診断精度を高めるために,自動解析が必要である。
本稿では,Capsule Vision 2024 Challengeのために開発された深層学習モデルであるCapsuleNetについて述べる。
高度に不均衡なデータセットを用いて、さまざまなデータ拡張戦略を実装し、データ不均衡を管理可能なレベルに低減した。
我々のモデルは、事前訓練されたEfficientNet-b7バックボーンを活用し、分類のための追加レイヤを調整し、PRELUアクティベーション関数で最適化する。
このモデルは検証データに対して優れた性能を示し、マイクロ精度84.5%に達し、多くのクラスでVGG16ベースラインを上回った。
これらの進歩にもかかわらず、エリテマのような特定の異常を分類する際の課題は残る。
以上の結果から,CapsuleNetのようなCNNベースのモデルでは,特に推定時間が重要な因子である場合,GIトラクション病の分類に有効な解が得られることが示唆された。
関連論文リスト
- Integrating Deep Feature Extraction and Hybrid ResNet-DenseNet Model for Multi-Class Abnormality Detection in Endoscopic Images [0.9374652839580183]
本研究の目的は、血管拡張症、出血、潰瘍を含む10種類のGI異常分類の同定を自動化することである。
提案したモデルは、よく構造化されたデータセットで全体の94%の精度を達成する。
論文 参考訳(メタデータ) (2024-10-24T06:10:31Z) - Comparative Performance Analysis of Transformer-Based Pre-Trained Models for Detecting Keratoconus Disease [0.0]
本研究は、変性眼疾患である角膜症(keratoconus)の診断のために、訓練済みの8つのCNNを比較した。
MobileNetV2は角膜と正常な症例を誤分類の少ない場合に最も正確なモデルであった。
論文 参考訳(メタデータ) (2024-08-16T20:15:24Z) - Leveraging Spatial and Semantic Feature Extraction for Skin Cancer Diagnosis with Capsule Networks and Graph Neural Networks [0.0]
本研究では,グラフニューラルネットワーク(GNN)とCapsule Networksを統合して,分類性能を向上させるという,革新的なアプローチを提案する。
本稿では,Tiny Pyramid Vision GNN(Tiny Pyramid ViG)アーキテクチャをCapsule Networkに組み込んで評価・拡張することに焦点を当てた。
75回のトレーニングの後、我々のモデルは89.23%と95.52%に達し、既存のベンチマークを上回った。
論文 参考訳(メタデータ) (2024-03-18T17:47:39Z) - GARNN: An Interpretable Graph Attentive Recurrent Neural Network for
Predicting Blood Glucose Levels via Multivariate Time Series [12.618792803757714]
マルチモーダルデータをモデル化するための解釈可能なグラフ減衰ニューラルネットワーク(GARNN)を提案する。
GARNNは最高の予測精度を達成し、高品質な時間的解釈性を提供する。
これらの知見は糖尿病治療改善のための堅牢なツールとしてのGARNNの可能性を示している。
論文 参考訳(メタデータ) (2024-02-26T01:18:53Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - COVID-19 Electrocardiograms Classification using CNN Models [1.1172382217477126]
深層学習アルゴリズムの統合による心電図(ECG)データの利用により、COVID-19を自動的に診断するための新しいアプローチが提案されている。
CNNモデルは、VGG16、VGG19、InceptionResnetv2、InceptionV3、Resnet50、Densenet201を含む提案されたフレームワークで利用されている。
この結果,VGG16モデルと比較すると,他のモデルに比べて比較的精度が低いことがわかった。
論文 参考訳(メタデータ) (2021-12-15T08:06:45Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
CT画像からの肺感染症の自動検出は、新型コロナウイルスに対処するための従来の医療戦略を強化する大きな可能性を秘めている。
CTスライスから感染領域を分割することは、高い感染特性の変化、感染と正常な組織の間の低強度のコントラストなど、いくつかの課題に直面している。
これらの課題に対処するため, 胸部CTスライスから感染部位を自動的に同定する, 新型のCOVID-19 Deep Lung infection Network (Inf-Net) が提案されている。
論文 参考訳(メタデータ) (2020-04-22T07:30:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。