論文の概要: Learn 2 Rage: Experiencing The Emotional Roller Coaster That Is Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2410.18462v1
- Date: Thu, 24 Oct 2024 06:16:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:50:28.770187
- Title: Learn 2 Rage: Experiencing The Emotional Roller Coaster That Is Reinforcement Learning
- Title(参考訳): 学習2:強化学習の情緒的なジェットコースターを体験する
- Authors: Lachlan Mares, Stefan Podgorski, Ian Reid,
- Abstract要約: この研究は、AIcrowdが主催するLearn To Race Autonomous Racing Virtual Challenge 2022で優勝したチームの実験とソリューションの概要を示します。
Learn-to-Raceコンペティションの目的は、自動運転の安全性のメリットを達成することに焦点を当て、自動運転技術の境界を推し進めることである。
SAC(Soft Actor Critic)の変種の実装に焦点をあてた。
私たちのゴールは、視覚的特徴と幾何学的特徴のみからレースカーの非自明な制御を学習し、ピクセルを直接制御アクションにマッピングすることでした。
- 参考スコア(独自算出の注目度): 5.962453678471195
- License:
- Abstract: This work presents the experiments and solution outline for our teams winning submission in the Learn To Race Autonomous Racing Virtual Challenge 2022 hosted by AIcrowd. The objective of the Learn-to-Race competition is to push the boundary of autonomous technology, with a focus on achieving the safety benefits of autonomous driving. In the description the competition is framed as a reinforcement learning (RL) challenge. We focused our initial efforts on implementation of Soft Actor Critic (SAC) variants. Our goal was to learn non-trivial control of the race car exclusively from visual and geometric features, directly mapping pixels to control actions. We made suitable modifications to the default reward policy aiming to promote smooth steering and acceleration control. The framework for the competition provided real time simulation, meaning a single episode (learning experience) is measured in minutes. Instead of pursuing parallelisation of episodes we opted to explore a more traditional approach in which the visual perception was processed (via learned operators) and fed into rule-based controllers. Such a system, while not as academically "attractive" as a pixels-to-actions approach, results in a system that requires less training, is more explainable, generalises better and is easily tuned and ultimately out-performed all other agents in the competition by a large margin.
- Abstract(参考訳): この研究は、AIcrowdが主催するLearn To Race Autonomous Racing Virtual Challenge 2022で優勝したチームの実験とソリューションの概要を示します。
Learn-to-Raceコンペティションの目的は、自動運転の安全性のメリットを達成することに焦点を当て、自動運転技術の境界を推し進めることである。
説明では、この競争は強化学習(RL)チャレンジとして構成されている。
SAC(Soft Actor Critic)の変種の実装に焦点をあてた。
私たちのゴールは、視覚的特徴と幾何学的特徴のみからレースカーの非自明な制御を学習し、ピクセルを直接制御アクションにマッピングすることでした。
我々は,スムーズなステアリングとアクセラレーション制御を促進するために,デフォルトの報酬ポリシーを適切に修正した。
コンペティションのフレームワークはリアルタイムシミュレーションを提供しており、単一のエピソード(学習経験)を数分で測定する。
エピソードの並列化を追求する代わりに、視覚的知覚を(学習したオペレータを通して)処理し、ルールベースのコントローラに入力する、より伝統的なアプローチを模索することにしました。
このようなシステムは、ピクセル・ツー・アクションのアプローチほど学術的には「魅力的な」ものではないが、訓練を少なくし、より説明しやすく、より良く一般化し、容易に調整され、最終的には競争における他のすべてのエージェントよりも大きなマージンでパフォーマンスするシステムをもたらす。
関連論文リスト
- FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
本稿では、自律型小型RCカーを強化学習(RL)を用いた視覚的観察から積極的に駆動するシステムを提案する。
我々のシステムであるFastRLAP (faster lap)は、人間の介入なしに、シミュレーションや専門家によるデモンストレーションを必要とせず、現実世界で自律的に訓練する。
結果として得られたポリシーは、タイミングブレーキや回転の加速度などの突発的な運転スキルを示し、ロボットの動きを妨げる領域を避け、トレーニングの途中で同様の1対1のインタフェースを使用して人間のドライバーのパフォーマンスにアプローチする。
論文 参考訳(メタデータ) (2023-04-19T17:33:47Z) - Learning Deep Sensorimotor Policies for Vision-based Autonomous Drone
Racing [52.50284630866713]
既存のシステムは、状態推定、計画、制御のために手作業によるコンポーネントを必要とすることが多い。
本稿では、深層感触者ポリシーを学習することで、視覚に基づく自律ドローンレース問題に取り組む。
論文 参考訳(メタデータ) (2022-10-26T19:03:17Z) - Generative Adversarial Imitation Learning for End-to-End Autonomous
Driving on Urban Environments [0.8122270502556374]
GAIL(Generative Adversarial Imitation Learning)は、報酬関数を明示的に定義することなくポリシーを訓練することができる。
両モデルとも,訓練終了後に開始から終了まで,専門家の軌道を模倣できることを示す。
論文 参考訳(メタデータ) (2021-10-16T15:04:13Z) - Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement
Learning [13.699336307578488]
深層模倣強化学習(DIRL)は、視覚入力を使用してアジャイルな自律レースを実現する。
我々は,高忠実性運転シミュレーションと実世界の1/20スケールRC-car上での車載計算の制限により,本アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2021-07-18T00:00:48Z) - Autonomous Overtaking in Gran Turismo Sport Using Curriculum
Reinforcement Learning [39.757652701917166]
本研究では,自律オーバーテイク問題に対する新たな学習手法を提案する。
カーレースシミュレーターであるGran Turismo Sportによるアプローチの評価を行った。
論文 参考訳(メタデータ) (2021-03-26T18:06:50Z) - Learn-to-Race: A Multimodal Control Environment for Autonomous Racing [23.798765519590734]
模擬フォーミュラ-Eスタイルのレースにおいて、L2R(Learn-to-Race)が活躍する新しい環境を紹介します。
シミュレーターと対面トレーニングフレームワークを含む我々の環境は、車両のダイナミックスとレース条件を正確にモデル化する。
次に,学習からドライブへの挑戦,フォーミュラeレース,および自動運転のためのマルチモーダル軌道予測に着想を得たl2rタスクを提案する。
論文 参考訳(メタデータ) (2021-03-22T04:03:06Z) - Deep Latent Competition: Learning to Race Using Visual Control Policies
in Latent Space [63.57289340402389]
Deep Latent Competition (DLC) は、想像力の自己プレイを通じて、競合する視覚制御ポリシーを学ぶ強化学習アルゴリズムである。
想像すると、セルフプレイは現実世界でコストのかかるサンプル生成を削減し、潜在表現は観測次元で計画を優雅にスケールできる。
論文 参考訳(メタデータ) (2021-02-19T09:00:29Z) - Learning from Simulation, Racing in Reality [126.56346065780895]
ミニチュアレースカープラットフォーム上で自律的なレースを行うための強化学習ベースのソリューションを提案する。
シミュレーションで純粋に訓練されたポリシーは、実際のロボットのセットアップにうまく移行できることを示す。
論文 参考訳(メタデータ) (2020-11-26T14:58:49Z) - Super-Human Performance in Gran Turismo Sport Using Deep Reinforcement
Learning [39.719051858649216]
高忠実度物理カーシミュレーションを利用した自律走行車レース学習システムを提案する。
私たちは、異なるレースカーとトラックのリアルな物理シミュレーションで知られている世界主導の自動車シミュレータであるGran Turismo Sportにシステムをデプロイしました。
私たちのトレーニングされたポリシーは、組み込みAIによってこれまで達成された以上の自律的なレースパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2020-08-18T15:06:44Z) - AirSim Drone Racing Lab [56.68291351736057]
AirSim Drone Racing Labは、この領域で機械学習研究を可能にするシミュレーションフレームワークである。
本フレームワークは,複数の写真リアル環境下でのレーストラック生成を可能にする。
当社のフレームワークを使用して,NeurIPS 2019で,シミュレーションベースのドローンレースコンペティションを開催しました。
論文 参考訳(メタデータ) (2020-03-12T08:06:06Z) - Learning by Cheating [72.9701333689606]
この難解な学習問題を2段階に分解することで単純化できることを示す。
提案手法を用いて、視覚に基づく自律運転システムの訓練を行い、芸術の状況を大幅に上回っている。
提案手法は,従来のCARLAベンチマークのすべてのタスクにおける100%の成功率を初めて達成し,NoCrashベンチマークに新しい記録を樹立し,従来の技術と比較すると,屈折率を桁違いに低減する。
論文 参考訳(メタデータ) (2019-12-27T18:59:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。