論文の概要: IMAN: An Adaptive Network for Robust NPC Mortality Prediction with Missing Modalities
- arxiv url: http://arxiv.org/abs/2410.18551v1
- Date: Thu, 24 Oct 2024 08:54:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:51:07.272200
- Title: IMAN: An Adaptive Network for Robust NPC Mortality Prediction with Missing Modalities
- Title(参考訳): IMAN: モダリティを欠いたロバストなNPC死亡率予測のための適応型ネットワーク
- Authors: Yejing Huo, Guoheng Huang, Lianglun Cheng, Jianbin He, Xuhang Chen, Xiaochen Yuan, Guo Zhong, Chi-Man Pun,
- Abstract要約: 鼻咽喉頭癌(NPC)の予後予測は治療戦略の最適化と患者の予後改善に不可欠である。
従来の機械学習アプローチでは、不完全なデータに直面した場合、パフォーマンスが大幅に低下する。
IMAN: モダリティを欠いた堅牢なNPC死亡予測のための適応型ネットワークについて紹介する。
- 参考スコア(独自算出の注目度): 36.05244404111041
- License:
- Abstract: Accurate prediction of mortality in nasopharyngeal carcinoma (NPC), a complex malignancy particularly challenging in advanced stages, is crucial for optimizing treatment strategies and improving patient outcomes. However, this predictive process is often compromised by the high-dimensional and heterogeneous nature of NPC-related data, coupled with the pervasive issue of incomplete multi-modal data, manifesting as missing radiological images or incomplete diagnostic reports. Traditional machine learning approaches suffer significant performance degradation when faced with such incomplete data, as they fail to effectively handle the high-dimensionality and intricate correlations across modalities. Even advanced multi-modal learning techniques like Transformers struggle to maintain robust performance in the presence of missing modalities, as they lack specialized mechanisms to adaptively integrate and align the diverse data types, while also capturing nuanced patterns and contextual relationships within the complex NPC data. To address these problem, we introduce IMAN: an adaptive network for robust NPC mortality prediction with missing modalities.
- Abstract(参考訳): 鼻咽喉頭癌(NPC)の予後の正確な予測は, 進行期において特に困難であり, 治療戦略の最適化と治療成績の改善に不可欠である。
しかし、この予測過程は、NPC関連データの高次元的・不均一な性質と、不完全なマルチモーダルデータの広範的問題によってしばしば損なわれ、放射線画像の欠如や不完全な診断報告として現れる。
従来の機械学習アプローチは、モダリティ間の高次元および複雑な相関を効果的に扱えないため、そのような不完全なデータに直面した場合、大幅な性能劣化を被る。
Transformersのような先進的なマルチモーダル学習技術でさえ、複雑なNPCデータ内のニュアンスパターンやコンテキスト関係をキャプチャしながら、さまざまなデータタイプを適応的に統合、調整する特別なメカニズムが欠如しているため、モダリティの欠如の存在下で堅牢なパフォーマンスを維持するのに苦労している。
これらの問題に対処するために、IMAN - モダリティを欠いた堅牢なNPC死亡予測のための適応型ネットワークを導入する。
関連論文リスト
- Survival Prediction in Lung Cancer through Multi-Modal Representation Learning [9.403446155541346]
本稿では,CTとPETの包括的情報と関連するゲノムデータを用いた生存予測手法を提案する。
我々は,マルチモーダル画像データと遺伝的情報を統合することにより,生存率の予測モデルを構築することを目的とする。
論文 参考訳(メタデータ) (2024-09-30T10:42:20Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - Unveiling Incomplete Modality Brain Tumor Segmentation: Leveraging Masked Predicted Auto-Encoder and Divergence Learning [6.44069573245889]
脳腫瘍のセグメンテーションは、特にマルチモーダルMRI(Multi-modal magnetic resonance imaging)における重要な課題である。
本稿では,不完全なモダリティデータから頑健な特徴学習を可能にする,マスク付き予測事前学習方式を提案する。
微調整段階において、我々は知識蒸留技術を用いて、完全なモダリティデータと欠落したモダリティデータの間に特徴を整列させ、同時にモデルロバスト性を向上する。
論文 参考訳(メタデータ) (2024-06-12T20:35:16Z) - SELECTOR: Heterogeneous graph network with convolutional masked autoencoder for multimodal robust prediction of cancer survival [8.403756148610269]
がん患者生存のマルチモーダル予測は、より包括的で正確なアプローチを提供する。
本稿では、畳み込みマスクエンコーダに基づく異種グラフ認識ネットワークであるSELECTORを紹介する。
本手法は,モダリティ欠落とモダリティ内情報確認の両事例において,最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-03-14T11:23:39Z) - DrFuse: Learning Disentangled Representation for Clinical Multi-Modal
Fusion with Missing Modality and Modal Inconsistency [18.291267748113142]
そこで本研究では,DrFuseを効果的に多モード核融合を実現するために提案する。
モダリティに共通する特徴と各モダリティに特有の特徴を分離することで、モダリティの欠如に対処する。
実世界の大規模データセットMIMIC-IVとMIMIC-CXRを用いて提案手法を検証する。
論文 参考訳(メタデータ) (2024-03-10T12:41:34Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Handling Non-ignorably Missing Features in Electronic Health Records
Data Using Importance-Weighted Autoencoders [8.518166245293703]
本稿では,生体データのランダムなパターンではなく,欠落を柔軟に扱うために,重要度重み付きオートエンコーダ(iwaes)と呼ばれるvaesの新たな拡張を提案する。
提案手法は,組み込みニューラルネットワークを用いて欠落機構をモデル化し,欠落機構の正確な形式を事前に指定する必要をなくした。
論文 参考訳(メタデータ) (2021-01-18T22:53:29Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
コンコルビンド病は、個人によって異なる複雑な時間的パターンを通じて発生し進行する。
電子的な健康記録では、患者が持つ異なる疾患を観察できるが、それぞれの共死状態の時間的関係を推測できるだけである。
我々は「ダイナミック・コオービディティ・ネットワーク」をモデル化するための深層拡散プロセスを開発する。
論文 参考訳(メタデータ) (2020-01-08T15:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。