論文の概要: Robust Brain Tumor Segmentation with Incomplete MRI Modalities Using Hölder Divergence and Mutual Information-Enhanced Knowledge Transfer
- arxiv url: http://arxiv.org/abs/2507.01254v1
- Date: Wed, 02 Jul 2025 00:18:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:59.963891
- Title: Robust Brain Tumor Segmentation with Incomplete MRI Modalities Using Hölder Divergence and Mutual Information-Enhanced Knowledge Transfer
- Title(参考訳): Hölder Divergence と Mutual Information-Enhanced Knowledge Transfer を用いたMRI不完全モードを用いたロバスト脳腫瘍切除
- Authors: Runze Cheng, Xihang Qiu, Ming Li, Ye Zhang, Chun Li, Fei Yu,
- Abstract要約: 不完全なモダリティであっても高いセグメンテーション精度を実現する頑健な単一モード並列処理フレームワークを提案する。
モデルでは、利用可能な入力に基づいてネットワークパラメータを動的に調整しながら、モダリティ固有の特徴を維持している。
これらのばらつきと情報に基づく損失関数を用いることで、このフレームワークは予測と地味ラベルの差異を効果的に定量化する。
- 参考スコア(独自算出の注目度): 10.66488607852885
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal MRI provides critical complementary information for accurate brain tumor segmentation. However, conventional methods struggle when certain modalities are missing due to issues such as image quality, protocol inconsistencies, patient allergies, or financial constraints. To address this, we propose a robust single-modality parallel processing framework that achieves high segmentation accuracy even with incomplete modalities. Leveraging Holder divergence and mutual information, our model maintains modality-specific features while dynamically adjusting network parameters based on the available inputs. By using these divergence- and information-based loss functions, the framework effectively quantifies discrepancies between predictions and ground-truth labels, resulting in consistently accurate segmentation. Extensive evaluations on the BraTS 2018 and BraTS 2020 datasets demonstrate superior performance over existing methods in handling missing modalities.
- Abstract(参考訳): マルチモーダルMRIは、正確な脳腫瘍セグメンテーションのための重要な補完情報を提供する。
しかし、画像品質、プロトコルの不整合、患者のアレルギー、金銭的制約などの問題により、特定のモダリティが欠落している場合、従来の手法は困難である。
これを解決するために,不完全なモダリティであっても高いセグメンテーション精度を実現する,ロバストな単一モード並列処理フレームワークを提案する。
ホルダーの発散と相互情報の活用により,ネットワークパラメータの動的調整を可能とし,モダリティに特有な特徴を保ちつつ,ネットワークパラメータを動的に調整する。
これらの分散と情報に基づく損失関数を用いることで、このフレームワークは予測と接地トラストラベルの差異を効果的に定量化し、一貫して正確なセグメンテーションをもたらす。
BraTS 2018とBraTS 2020データセットの大規模な評価は、欠落したモダリティを扱う既存のメソッドよりも優れたパフォーマンスを示している。
関連論文リスト
- GANet-Seg: Adversarial Learning for Brain Tumor Segmentation with Hybrid Generative Models [1.0456203870202954]
この研究は、事前訓練されたGANとUnetアーキテクチャを利用した脳腫瘍セグメンテーションのための新しいフレームワークを導入する。
グローバルな異常検出モジュールと改良されたマスク生成ネットワークを組み合わせることで,腫瘍感受性領域を正確に同定する。
マルチモーダルMRIデータと合成画像拡張を用いて、ロバスト性を改善し、限られたアノテートデータセットの課題に対処する。
論文 参考訳(メタデータ) (2025-06-26T13:28:09Z) - Hypergraph Tversky-Aware Domain Incremental Learning for Brain Tumor Segmentation with Missing Modalities [9.429176881328274]
臨床実践では、MRI 取得の逐次的な性質のため、MRI のモダリティが欠落している場合もある。
Replay-based Hypergraph Domain Incremental Learning (ReHyDIL) を提案する。
論文 参考訳(メタデータ) (2025-05-22T15:49:25Z) - Robust Divergence Learning for Missing-Modality Segmentation [6.144772447916824]
マルチモーダルMRI(Multimodal Magnetic Resonance Imaging)は、脳腫瘍の亜領域を解析するための重要な補完情報を提供する。
自動セグメンテーションのための4つの一般的なMRIモダリティを用いた手法は成功しているが、画像品質の問題、一貫性のないプロトコル、アレルギー反応、コスト要因などにより、モダリティの欠如に悩まされることが多い。
H"古い発散と相互情報に基づく新しい単一モード並列処理ネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-13T03:03:30Z) - Unveiling Incomplete Modality Brain Tumor Segmentation: Leveraging Masked Predicted Auto-Encoder and Divergence Learning [6.44069573245889]
脳腫瘍のセグメンテーションは、特にマルチモーダルMRI(Multi-modal magnetic resonance imaging)における重要な課題である。
本稿では,不完全なモダリティデータから頑健な特徴学習を可能にする,マスク付き予測事前学習方式を提案する。
微調整段階において、我々は知識蒸留技術を用いて、完全なモダリティデータと欠落したモダリティデータの間に特徴を整列させ、同時にモデルロバスト性を向上する。
論文 参考訳(メタデータ) (2024-06-12T20:35:16Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
脳腫瘍は世界で最も致命的ながんの1つであり、子供や高齢者に非常に多い。
本稿では,MRI脳腫瘍グレーディングの課題に対処するために,新たな多モード学習法を提案する。
論文 参考訳(メタデータ) (2024-01-17T07:54:49Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
画像モダリティの欠如に頑健な新しいマルチモーダルセグメンテーションフレームワークを提案する。
我々のネットワークは、入力モードをモダリティ固有の外観コードに分解するために、特徴不整合を用いる。
我々は,BRATSチャレンジデータセットを用いて,重要なマルチモーダル脳腫瘍セグメンテーション課題に対する本手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-02-22T14:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。