Exploiting Interpretable Capabilities with Concept-Enhanced Diffusion and Prototype Networks
- URL: http://arxiv.org/abs/2410.18705v2
- Date: Mon, 04 Nov 2024 19:02:32 GMT
- Title: Exploiting Interpretable Capabilities with Concept-Enhanced Diffusion and Prototype Networks
- Authors: Alba Carballo-Castro, Sonia Laguna, Moritz Vandenhirtz, Julia E. Vogt,
- Abstract summary: We create concept-enriched models that incorporate concept information into existing architectures.
In particular, we propose Concept-Guided Diffusion Conditional, which can generate visual representations of concepts, and Concept-Guided Prototype Networks, which can create a concept prototype dataset and leverage it to perform interpretable concept prediction.
These results open up new lines of research by exploiting pre-existing information in the quest for rendering machine learning more human-understandable.
- Score: 8.391254800873599
- License:
- Abstract: Concept-based machine learning methods have increasingly gained importance due to the growing interest in making neural networks interpretable. However, concept annotations are generally challenging to obtain, making it crucial to leverage all their prior knowledge. By creating concept-enriched models that incorporate concept information into existing architectures, we exploit their interpretable capabilities to the fullest extent. In particular, we propose Concept-Guided Conditional Diffusion, which can generate visual representations of concepts, and Concept-Guided Prototype Networks, which can create a concept prototype dataset and leverage it to perform interpretable concept prediction. These results open up new lines of research by exploiting pre-existing information in the quest for rendering machine learning more human-understandable.
Related papers
- Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - Restyling Unsupervised Concept Based Interpretable Networks with Generative Models [14.604305230535026]
We propose a novel method that relies on mapping the concept features to the latent space of a pretrained generative model.
We quantitatively ascertain the efficacy of our method in terms of accuracy of the interpretable prediction network, fidelity of reconstruction, as well as faithfulness and consistency of learnt concepts.
arXiv Detail & Related papers (2024-07-01T14:39:41Z) - LLM-assisted Concept Discovery: Automatically Identifying and Explaining Neuron Functions [15.381209058506078]
Prior works have associated concepts with neurons based on examples of concepts or a pre-defined set of concepts.
We propose to leverage multimodal large language models for automatic and open-ended concept discovery.
We validate each concept by generating examples and counterexamples and evaluating the neuron's response on this new set of images.
arXiv Detail & Related papers (2024-06-12T18:19:37Z) - A Self-explaining Neural Architecture for Generalizable Concept Learning [29.932706137805713]
We show that present SOTA concept learning approaches suffer from two major problems - lack of concept fidelity and limited concept interoperability.
We propose a novel self-explaining architecture for concept learning across domains.
We demonstrate the efficacy of our proposed approach over current SOTA concept learning approaches on four widely used real-world datasets.
arXiv Detail & Related papers (2024-05-01T06:50:18Z) - ConcEPT: Concept-Enhanced Pre-Training for Language Models [57.778895980999124]
ConcEPT aims to infuse conceptual knowledge into pre-trained language models.
It exploits external entity concept prediction to predict the concepts of entities mentioned in the pre-training contexts.
Results of experiments show that ConcEPT gains improved conceptual knowledge with concept-enhanced pre-training.
arXiv Detail & Related papers (2024-01-11T05:05:01Z) - Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks [24.45212348373868]
This paper presents a novel concept learning framework for enhancing model interpretability and performance in visual classification tasks.
Our approach appends an unsupervised explanation generator to the primary classifier network and makes use of adversarial training.
This work presents a significant step towards building inherently interpretable deep vision models with task-aligned concept representations.
arXiv Detail & Related papers (2024-01-09T16:16:16Z) - Concept Gradient: Concept-based Interpretation Without Linear Assumption [77.96338722483226]
Concept Activation Vector (CAV) relies on learning a linear relation between some latent representation of a given model and concepts.
We proposed Concept Gradient (CG), extending concept-based interpretation beyond linear concept functions.
We demonstrated CG outperforms CAV in both toy examples and real world datasets.
arXiv Detail & Related papers (2022-08-31T17:06:46Z) - ZeroC: A Neuro-Symbolic Model for Zero-shot Concept Recognition and
Acquisition at Inference Time [49.067846763204564]
Humans have the remarkable ability to recognize and acquire novel visual concepts in a zero-shot manner.
We introduce Zero-shot Concept Recognition and Acquisition (ZeroC), a neuro-symbolic architecture that can recognize and acquire novel concepts in a zero-shot way.
arXiv Detail & Related papers (2022-06-30T06:24:45Z) - Learning with Capsules: A Survey [73.31150426300198]
Capsule networks were proposed as an alternative approach to Convolutional Neural Networks (CNNs) for learning object-centric representations.
Unlike CNNs, capsule networks are designed to explicitly model part-whole hierarchical relationships.
arXiv Detail & Related papers (2022-06-06T15:05:36Z) - GlanceNets: Interpretabile, Leak-proof Concept-based Models [23.7625973884849]
Concept-based models (CBMs) combine high-performance and interpretability by acquiring and reasoning with a vocabulary of high-level concepts.
We provide a clear definition of interpretability in terms of alignment between the model's representation and an underlying data generation process.
We introduce GlanceNets, a new CBM that exploits techniques from disentangled representation learning and open-set recognition to achieve alignment.
arXiv Detail & Related papers (2022-05-31T08:53:53Z) - Human-Centered Concept Explanations for Neural Networks [47.71169918421306]
We introduce concept explanations including the class of Concept Activation Vectors (CAV)
We then discuss approaches to automatically extract concepts, and approaches to address some of their caveats.
Finally, we discuss some case studies that showcase the utility of such concept-based explanations in synthetic settings and real world applications.
arXiv Detail & Related papers (2022-02-25T01:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.