論文の概要: MazeNet: An Accurate, Fast, and Scalable Deep Learning Solution for Steiner Minimum Trees
- arxiv url: http://arxiv.org/abs/2410.18832v1
- Date: Thu, 24 Oct 2024 15:19:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:49:13.393832
- Title: MazeNet: An Accurate, Fast, and Scalable Deep Learning Solution for Steiner Minimum Trees
- Title(参考訳): MazeNet: ステニア最小木のための正確で高速でスケーラブルなディープラーニングソリューション
- Authors: Gabriel Díaz Ramos, Toros Arikan, Richard G. Baraniuk,
- Abstract要約: 我々は,OARSMT(Obstacle Avoiding Rectilinear Steiner Minimum Tree)をデータから解くためのディープラーニングベースの手法であるMazeNetを提案する。
MazeNetの重要な特徴はスケーラビリティです – 少数の端末を持つ迷路上でRCNNブロックをトレーニングするだけでよいのです。
幅広い実験において、MazeNetはOARSMT解決の精度を完璧に達成し、従来の正確なアルゴリズムと比較してランタイムを大幅に削減し、最先端の近似アルゴリズムよりも多くの端末を処理することができる。
- 参考スコア(独自算出の注目度): 24.24123863704024
- License:
- Abstract: The Obstacle Avoiding Rectilinear Steiner Minimum Tree (OARSMT) problem, which seeks the shortest interconnection of a given number of terminals in a rectilinear plane while avoiding obstacles, is a critical task in integrated circuit design, network optimization, and robot path planning. Since OARSMT is NP-hard, exact algorithms scale poorly with the number of terminals, leading practical solvers to sacrifice accuracy for large problems. We propose MazeNet, a deep learning-based method that learns to solve the OARSMT from data. MazeNet reframes OARSMT as a maze-solving task that can be addressed with a recurrent convolutional neural network (RCNN). A key hallmark of MazeNet is its scalability: we only need to train the RCNN blocks on mazes with a small number of terminals; larger mazes can be solved by replicating the same pre-trained blocks to create a larger network. Across a wide range of experiments, MazeNet achieves perfect OARSMT-solving accuracy, significantly reduces runtime compared to classical exact algorithms, and can handle more terminals than state-of-the-art approximate algorithms.
- Abstract(参考訳): OARSMT問題(Obstacle Avoiding Rectilinear Steiner Minimum Tree)は、回路設計、ネットワーク最適化、ロボット経路計画において重要な課題である。
OARSMT はNPハードであるため、正確なアルゴリズムは端末数に乏しく、実用的な解法は大きな問題に対して精度を犠牲にする。
データからOARSMTの解法を学ぶ深層学習に基づくMazeNetを提案する。
MazeNetは、繰り返し畳み込みニューラルネットワーク(RCNN)で対処できる迷路解決タスクとしてOARSMTを再構成する。
MazeNetの重要な特徴はスケーラビリティです – 少数の端末を持つ迷路上でRCNNブロックをトレーニングするだけでよいのです。
幅広い実験において、MazeNetはOARSMT解決の精度を完璧に達成し、従来の正確なアルゴリズムと比較してランタイムを大幅に削減し、最先端の近似アルゴリズムよりも多くの端末を処理することができる。
関連論文リスト
- ECLipsE: Efficient Compositional Lipschitz Constant Estimation for Deep Neural Networks [0.8993153817914281]
リプシッツ定数は、入力摂動に対するニューラルネットワークの堅牢性を証明する上で重要な役割を果たす。
リプシッツ定数の厳密な上界を得る努力がなされている。
ディープフィードフォワードニューラルネットワークに対するリプシッツ定数を推定するための構成的アプローチを提案する。
論文 参考訳(メタデータ) (2024-04-05T19:36:26Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Pathfinding Neural Cellular Automata [23.831530224401575]
Pathfindingは、ロボットパス計画、トランスポートルーティング、ゲームプレイなど、幅広い複雑なAIタスクの重要なサブコンポーネントである。
我々は, Breadth-First Search (BFS) のモデル,すなわち最短経路探索のハンドコードと学習を行う。
本稿では、Depth-First Search(DFS)のニューラル実装を提案し、グラフの直径を計算するためのNAAを生成するために、ニューラルネットワークBFSと組み合わせる方法について概説する。
我々は,これらの手書きNCAに触発されたアーキテクチャ変更を実験し,グリッド迷路の直径問題を解くためにゼロからネットワークをトレーニングし,高い能力の一般化を示した。
論文 参考訳(メタデータ) (2023-01-17T11:45:51Z) - Neural network relief: a pruning algorithm based on neural activity [47.57448823030151]
重要でない接続を非活性化する簡易な重要スコア計量を提案する。
MNIST上でのLeNetアーキテクチャの性能に匹敵する性能を実現する。
このアルゴリズムは、現在のハードウェアとソフトウェアの実装を考えるとき、FLOPを最小化するように設計されていない。
論文 参考訳(メタデータ) (2021-09-22T15:33:49Z) - OMPQ: Orthogonal Mixed Precision Quantization [64.59700856607017]
混合精度量子化は、ハードウェアの多重ビット幅演算を利用して、ネットワーク量子化の全ポテンシャルを解き放つ。
本稿では、整数プログラミングの損失と高い相関関係にあるネットワーク性の概念であるプロキシメトリックを最適化することを提案する。
このアプローチは、量子化精度にほとんど妥協することなく、検索時間と必要なデータ量を桁違いに削減する。
論文 参考訳(メタデータ) (2021-09-16T10:59:33Z) - Multi-layered Network Exploration via Random Walks: From Offline
Optimization to Online Learning [33.450042829375086]
マルチレイヤネットワーク探索(MuLaNE)問題は、多くのアプリケーションから抽象化された重要な問題である。
MuLaNEには複数のネットワーク層があり、各ノードは重みを持ち、各レイヤはランダムウォークによって探索される。
オフライン最適化からオンライン学習まで,この問題を体系的に研究する。
論文 参考訳(メタデータ) (2021-06-09T13:35:39Z) - ConCrete MAP: Learning a Probabilistic Relaxation of Discrete Variables
for Soft Estimation with Low Complexity [9.62543698736491]
ConCrete MAP Detection (CMD)は、大きな逆線形問題に対する反復検出アルゴリズムである。
我々は、SotAと比較して、CMDが有望なパフォーマンス複雑性のトレードオフを特徴付けることを示す。
特に,CMDのソフト出力がデコーダに信頼性を持つことを示す。
論文 参考訳(メタデータ) (2021-02-25T09:54:25Z) - Online Limited Memory Neural-Linear Bandits with Likelihood Matching [53.18698496031658]
本研究では,探索学習と表現学習の両方が重要な役割を果たす課題を解決するために,ニューラルネットワークの帯域について検討する。
破滅的な忘れ込みに対して耐性があり、完全にオンラインである可能性の高いマッチングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-07T14:19:07Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Solving Mixed Integer Programs Using Neural Networks [57.683491412480635]
本稿では,mipソルバの2つのキーサブタスクに学習を適用し,高品質なジョイント変数割当を生成し,その割当と最適課題との客観的値の差を限定する。
提案手法は,ニューラルネットワークに基づく2つのコンポーネントであるニューラルダイバーディングとニューラルブランチを構築し,SCIPなどのベースMIPソルバで使用する。
2つのGoogle生産データセットとMIPLIBを含む6つの現実世界データセットに対するアプローチを評価し、それぞれに別々のニューラルネットワークをトレーニングする。
論文 参考訳(メタデータ) (2020-12-23T09:33:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。