論文の概要: We Augmented Whisper With kNN and You Won't Believe What Came Next
- arxiv url: http://arxiv.org/abs/2410.18850v1
- Date: Thu, 24 Oct 2024 15:32:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 16:43:30.405367
- Title: We Augmented Whisper With kNN and You Won't Believe What Came Next
- Title(参考訳): 私たちはkNNでWhisperを増強し、次は何になるのかを信じない
- Authors: Maya K. Nachesa, Vlad Niculae,
- Abstract要約: 変換器のエンドツーエンド音声モデルであるWhisperが$k$NNの恩恵を受けていることを示す。
話者適応の意義について議論し、性別、アクセント、年齢による改善を分析した。
- 参考スコア(独自算出の注目度): 10.174848090916669
- License:
- Abstract: Speech recognition performance varies by language, domain, and speaker characteristics such as accent, and fine-tuning a model on any of these categories may lead to catastrophic forgetting. $k$ nearest neighbor search ($k$NN), first proposed for neural sequence decoders for natural language generation (NLG) and machine translation (MT), is a non-parametric method that can instead adapt by building an external datastore that can then be searched during inference time, without training the underlying model. We show that Whisper, a transformer end-to-end speech model, benefits from $k$NN. We investigate the differences between the speech and text setups. We discuss implications for speaker adaptation, and analyze improvements by gender, accent, and age.
- Abstract(参考訳): 音声認識の性能は、アクセントのような言語、ドメイン、話者の特性によって異なり、これらのカテゴリーのモデルに微調整を加えると、破滅的な忘れが生ずる可能性がある。
自然言語生成(NLG)と機械翻訳(MT)のためのニューラルシークエンスデコーダとして最初に提案された$k$近くの検索(k$NN)は、代わりに推論時に検索できる外部データストアを構築することで、基礎となるモデルをトレーニングすることなく適応できる非パラメトリックな方法である。
変換器のエンドツーエンド音声モデルであるWhisperが$k$NNの恩恵を受けていることを示す。
音声とテキストのセットアップの違いについて検討する。
話者適応の意義について議論し、性別、アクセント、年齢による改善を分析した。
関連論文リスト
- Multi-modal Adversarial Training for Zero-Shot Voice Cloning [9.823246184635103]
実音声特徴と生成音声特徴を条件付きで識別するトランスフォーマーエンコーダデコーダアーキテクチャを提案する。
我々は、FastSpeech2音響モデルに適用し、大規模マルチスピーカーデータセットであるLibriheavyのトレーニングを行うことにより、新しい対角訓練手法を導入する。
本モデルは,音声品質と話者類似度の観点から,ベースラインに対する改善を実現する。
論文 参考訳(メタデータ) (2024-08-28T16:30:41Z) - Generative Pre-trained Speech Language Model with Efficient Hierarchical Transformer [39.31849739010572]
textbfGenerative textbfPre-trained textbfSpeech textbfTransformer (GPST)を紹介する。
GPSTは効率的な音声言語モデリングのために設計された階層変換器である。
論文 参考訳(メタデータ) (2024-06-03T04:16:30Z) - TransVIP: Speech to Speech Translation System with Voice and Isochrony Preservation [97.54885207518946]
カスケード方式で多様なデータセットを活用する新しいモデルフレームワークTransVIPを提案する。
本稿では、話者の音声特性と、翻訳過程における音源音声からの等時性を維持するために、2つの分離エンコーダを提案する。
フランス語と英語のペアに関する実験により、我々のモデルは、現在最先端の音声音声翻訳モデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2024-05-28T04:11:37Z) - SpeechAlign: Aligning Speech Generation to Human Preferences [51.684183257809075]
本稿では,言語モデルと人間の嗜好を一致させる反復的自己改善戦略であるSpeechAlignを紹介する。
我々は、SpeechAlignが分散ギャップを埋め、言語モデルの継続的自己改善を促進することができることを示す。
論文 参考訳(メタデータ) (2024-04-08T15:21:17Z) - Can Language Models Learn to Listen? [96.01685069483025]
本稿では,話者の言葉に基づく社会的対話における聞き手から適切な表情応答を生成するための枠組みを提案する。
提案手法は,VQ-VAEを用いて定量化したリスナーの顔のジェスチャー列であるリスナーの応答を自己回帰的に予測する。
生成したリスナーの動きは,定量的メトリクスと質的ユーザスタディを通じて,言語意味論に精通し,反映していることを示す。
論文 参考訳(メタデータ) (2023-08-21T17:59:02Z) - Mega-TTS: Zero-Shot Text-to-Speech at Scale with Intrinsic Inductive
Bias [71.94109664001952]
Mega-TTSは、大規模な野生データで訓練された新しいゼロショットTSシステムである。
Mega-TTS はゼロショット TTS 音声編集や言語間 TTS タスクにおいて最先端 TTS システムを超えていることを示す。
論文 参考訳(メタデータ) (2023-06-06T08:54:49Z) - Prompt Tuning of Deep Neural Networks for Speaker-adaptive Visual Speech Recognition [66.94463981654216]
話者適応型視覚音声認識(VSR)のためのディープニューラルネットワーク(DNN)の即時チューニング手法を提案する。
我々は、事前訓練されたモデルパラメータを変更する代わりに、ターゲット話者の適応データを微調整する。
提案手法の有効性を単語レベルのVSRデータベースと文レベルのVSRデータベースで評価した。
論文 参考訳(メタデータ) (2023-02-16T06:01:31Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
音節や音素を含む言語単位に基づくLSTMに基づく新しい生成音声LMを提案する。
限られたデータセットでは、現代の生成モデルで要求されるものよりも桁違いに小さいので、我々のモデルはバブリング音声を近似する。
補助的なテキストLM,マルチタスク学習目標,補助的な調音特徴を用いた訓練の効果を示す。
論文 参考訳(メタデータ) (2021-10-31T22:48:30Z) - Deep Learning Based Assessment of Synthetic Speech Naturalness [14.463987018380468]
合成音声の自然性に対する新たな客観的予測モデルを提案する。
Text-To-SpeechまたはVoice Conversionシステムの評価に使用できる。
論文 参考訳(メタデータ) (2021-04-23T16:05:20Z) - Phoneme Boundary Detection using Learnable Segmental Features [31.203969460341817]
音素境界検出は様々な音声処理アプリケーションにおいて重要な第一歩となる。
本稿では,音素境界検出タスクのセグメント表現を学習するために,パラメータ化された構造的損失関数と結合したニューラルアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-02-11T14:03:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。