Where Am I and What Will I See: An Auto-Regressive Model for Spatial Localization and View Prediction
- URL: http://arxiv.org/abs/2410.18962v1
- Date: Thu, 24 Oct 2024 17:58:05 GMT
- Title: Where Am I and What Will I See: An Auto-Regressive Model for Spatial Localization and View Prediction
- Authors: Junyi Chen, Di Huang, Weicai Ye, Wanli Ouyang, Tong He,
- Abstract summary: We present Generative Spatial Transformer ( GST), a novel auto-regressive framework that jointly addresses spatial localization and view prediction.
Our model simultaneously estimates the camera pose from a single image and predicts the view from a new camera pose, effectively bridging the gap between spatial awareness and visual prediction.
- Score: 60.964512894143475
- License:
- Abstract: Spatial intelligence is the ability of a machine to perceive, reason, and act in three dimensions within space and time. Recent advancements in large-scale auto-regressive models have demonstrated remarkable capabilities across various reasoning tasks. However, these models often struggle with fundamental aspects of spatial reasoning, particularly in answering questions like "Where am I?" and "What will I see?". While some attempts have been done, existing approaches typically treat them as separate tasks, failing to capture their interconnected nature. In this paper, we present Generative Spatial Transformer (GST), a novel auto-regressive framework that jointly addresses spatial localization and view prediction. Our model simultaneously estimates the camera pose from a single image and predicts the view from a new camera pose, effectively bridging the gap between spatial awareness and visual prediction. The proposed innovative camera tokenization method enables the model to learn the joint distribution of 2D projections and their corresponding spatial perspectives in an auto-regressive manner. This unified training paradigm demonstrates that joint optimization of pose estimation and novel view synthesis leads to improved performance in both tasks, for the first time, highlighting the inherent relationship between spatial awareness and visual prediction.
Related papers
- 3D Hand Mesh Recovery from Monocular RGB in Camera Space [3.0453197258042213]
This study proposes a network model that performs parallel processing of root-relative grids and root recovery tasks.
We utilize an implicit learning approach for 2D heatmaps, enhancing the compatibility of 2D cues across different subtasks.
Our proposed model is comparable with state-of-the-art models.
arXiv Detail & Related papers (2024-05-12T05:36:37Z) - Closely Interactive Human Reconstruction with Proxemics and Physics-Guided Adaption [64.07607726562841]
Existing multi-person human reconstruction approaches mainly focus on recovering accurate poses or avoiding penetration.
In this work, we tackle the task of reconstructing closely interactive humans from a monocular video.
We propose to leverage knowledge from proxemic behavior and physics to compensate the lack of visual information.
arXiv Detail & Related papers (2024-04-17T11:55:45Z) - Social-Transmotion: Promptable Human Trajectory Prediction [65.80068316170613]
Social-Transmotion is a generic Transformer-based model that exploits diverse and numerous visual cues to predict human behavior.
Our approach is validated on multiple datasets, including JTA, JRDB, Pedestrians and Cyclists in Road Traffic, and ETH-UCY.
arXiv Detail & Related papers (2023-12-26T18:56:49Z) - Triplet Attention Transformer for Spatiotemporal Predictive Learning [9.059462850026216]
We propose an innovative triplet attention transformer designed to capture both inter-frame dynamics and intra-frame static features.
The model incorporates the Triplet Attention Module (TAM), which replaces traditional recurrent units by exploring self-attention mechanisms in temporal, spatial, and channel dimensions.
arXiv Detail & Related papers (2023-10-28T12:49:33Z) - DiffPose: SpatioTemporal Diffusion Model for Video-Based Human Pose
Estimation [16.32910684198013]
We present DiffPose, a novel diffusion architecture that formulates video-based human pose estimation as a conditional heatmap generation problem.
We show two unique characteristics from DiffPose on pose estimation task: (i) the ability to combine multiple sets of pose estimates to improve prediction accuracy, particularly for challenging joints, and (ii) the ability to adjust the number of iterative steps for feature refinement without retraining the model.
arXiv Detail & Related papers (2023-07-31T14:00:23Z) - SPOTR: Spatio-temporal Pose Transformers for Human Motion Prediction [12.248428883804763]
3D human motion prediction is a research area computation of high significance and a challenge in computer vision.
Traditionally, autogregressive models have been used to predict human motion.
We present a non-autoregressive model for human motion prediction.
arXiv Detail & Related papers (2023-03-11T01:44:29Z) - LiP-Flow: Learning Inference-time Priors for Codec Avatars via
Normalizing Flows in Latent Space [90.74976459491303]
We introduce a prior model that is conditioned on the runtime inputs and tie this prior space to the 3D face model via a normalizing flow in the latent space.
A normalizing flow bridges the two representation spaces and transforms latent samples from one domain to another, allowing us to define a latent likelihood objective.
We show that our approach leads to an expressive and effective prior, capturing facial dynamics and subtle expressions better.
arXiv Detail & Related papers (2022-03-15T13:22:57Z) - Investigating Pose Representations and Motion Contexts Modeling for 3D
Motion Prediction [63.62263239934777]
We conduct an indepth study on various pose representations with a focus on their effects on the motion prediction task.
We propose a novel RNN architecture termed AHMR (Attentive Hierarchical Motion Recurrent network) for motion prediction.
Our approach outperforms the state-of-the-art methods in short-term prediction and achieves much enhanced long-term prediction proficiency.
arXiv Detail & Related papers (2021-12-30T10:45:22Z) - Towards an Interpretable Latent Space in Structured Models for Video
Prediction [30.080907495461876]
We focus on the task of future frame prediction in video governed by underlying physical dynamics.
We work with models which are object-centric, i.e., explicitly work with object representations, and propagate a loss in the latent space.
arXiv Detail & Related papers (2021-07-16T05:37:16Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.