Deep learning based ECG segmentation for delineation of diverse arrhythmias
- URL: http://arxiv.org/abs/2304.06237v3
- Date: Wed, 7 Aug 2024 04:59:21 GMT
- Title: Deep learning based ECG segmentation for delineation of diverse arrhythmias
- Authors: Chankyu Joung, Mijin Kim, Taejin Paik, Seong-Ho Kong, Seung-Young Oh, Won Kyeong Jeon, Jae-hu Jeon, Joong-Sik Hong, Wan-Joong Kim, Woong Kook, Myung-Jin Cha, Otto van Koert,
- Abstract summary: We introduce a U-Net-like segmentation model for ECG delineation with a particular focus on diverse arrhythmias.
This is followed by a post-processing algorithm which removes noise and automatically determines the boundaries of P, QRS, and T waves.
Our model has been trained on a diverse dataset and evaluated against the LUDB and QTDB datasets to show strong performance, with F1-scores exceeding 99% for QRS and T waves, and over 97% for P waves in the LUDB dataset.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate delineation of key waveforms in an ECG is a critical step in extracting relevant features to support the diagnosis and treatment of heart conditions. Although deep learning based methods using segmentation models to locate P, QRS, and T waves have shown promising results, their ability to handle arrhythmias has not been studied in any detail. In this paper we investigate the effect of arrhythmias on delineation quality and develop strategies to improve performance in such cases. We introduce a U-Net-like segmentation model for ECG delineation with a particular focus on diverse arrhythmias. This is followed by a post-processing algorithm which removes noise and automatically determines the boundaries of P, QRS, and T waves. Our model has been trained on a diverse dataset and evaluated against the LUDB and QTDB datasets to show strong performance, with F1-scores exceeding 99% for QRS and T waves, and over 97% for P waves in the LUDB dataset. Furthermore, we assess various models across a wide array of arrhythmias and observe that models with a strong performance on standard benchmarks may still perform poorly on arrhythmias that are underrepresented in these benchmarks, such as tachycardias. We propose solutions to address this discrepancy.
Related papers
- rECGnition_v1.0: Arrhythmia detection using cardiologist-inspired multi-modal architecture incorporating demographic attributes in ECG [3.0473237906125954]
We propose a novel multi-modal methodology for ECG analysis and arrhythmia classification.
The proposed rECGnition_v1.0 algorithm paves the way for its deployment in clinics.
arXiv Detail & Related papers (2024-10-09T11:17:02Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - Non-linear Analysis Based ECG Classification of Cardiovascular Disorders [2.474908349649168]
Multi-channel ECG-based cardiac disorders detection has an impact on cardiac care and treatment.
The present study reports a non-linear analysis-based methodology that utilizes Recurrence plot visualization.
The patterned occurrence of well-defined structures, such as the QRS complex, can be exploited effectively using Recurrence plots.
arXiv Detail & Related papers (2024-08-02T19:03:53Z) - DDSB: An Unsupervised and Training-free Method for Phase Detection in Echocardiography [37.32413956117856]
We propose an unsupervised and training-free method to identify End-Diastolic (ED) and End-Systolic (ES) frames.
By identifying anchor points and analyzing directional deformation, we effectively reduce dependence on the accuracy of initial segmentation images.
Our method achieves comparable accuracy to learning-based models without their associated drawbacks.
arXiv Detail & Related papers (2024-03-19T14:51:01Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Supraventricular Tachycardia Detection and Classification Model of ECG
signal Using Machine Learning [0.0]
Investigation on the electrocardiogram (ECG) signals is an essential way to diagnose heart disease.
This work presents a supraventricular arrhythmia prediction model consisting of a few stages, including filtering of noise.
We have developed a classification model based on machine learning that can successfully categorize different types of supraventricular tachycardia.
arXiv Detail & Related papers (2021-12-24T05:48:26Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - A Graph-constrained Changepoint Detection Approach for ECG Segmentation [5.209323879611983]
We introduce a novel graph-based optimal changepoint detection (GCCD) method for reliable detection of R-peak positions without employing any preprocessing step.
Based on the MIT-BIH arrhythmia (MIT-BIH-AR) database, the proposed method achieves overall sensitivity Sen = 99.76, positive predictivity PPR = 99.68, and detection error rate DER = 0.55.
arXiv Detail & Related papers (2020-04-24T23:41:41Z) - RPnet: A Deep Learning approach for robust R Peak detection in noisy ECG [0.0]
A novel application of the Unet combined with Inception and Residual blocks is proposed to perform the extraction of R-peaks from an ECG.
The proposed network was trained on a database containing ECG episodes that have CVD and was tested against three traditional ECG detectors.
arXiv Detail & Related papers (2020-04-17T08:11:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.