論文の概要: Generative Topology for Shape Synthesis
- arxiv url: http://arxiv.org/abs/2410.18987v1
- Date: Wed, 09 Oct 2024 17:19:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-03 08:52:29.389257
- Title: Generative Topology for Shape Synthesis
- Title(参考訳): 形状合成のための生成トポロジー
- Authors: Ernst Röell, Bastian Rieck,
- Abstract要約: 我々はポイントクラウド上での形状生成タスクのための新しいフレームワークを開発する。
提案モデルでは, 復元作業や生成作業の質が高く, 効率の良い潜在空間を確保でき, 既存の手法よりも桁違いに高速である。
- 参考スコア(独自算出の注目度): 13.608942872770855
- License:
- Abstract: The Euler Characteristic Transform (ECT) is a powerful invariant for assessing geometrical and topological characteristics of a large variety of objects, including graphs and embedded simplicial complexes. Although the ECT is invertible in theory, no explicit algorithm for general data sets exists. In this paper, we address this lack and demonstrate that it is possible to learn the inversion, permitting us to develop a novel framework for shape generation tasks on point clouds. Our model exhibits high quality in reconstruction and generation tasks, affords efficient latent-space interpolation, and is orders of magnitude faster than existing methods.
- Abstract(参考訳): オイラー特性変換(英: Euler Characteristics Transform, ECT)は、グラフや埋め込み単純複体を含む、多種多様な対象の幾何学的および位相的特性を評価するための強力な不変量である。
ECTは理論上は可逆であるが、一般データセットに対する明示的なアルゴリズムは存在しない。
本稿では、この欠点に対処し、逆転学習が可能であることを示し、ポイントクラウド上での形状生成タスクのための新しいフレームワークの開発を可能にする。
提案モデルでは, 復元作業や生成作業の質が高く, 効率的な潜時空間補間が可能であり, 既存の手法よりも桁違いに高速である。
関連論文リスト
- Bridging Domain Gap of Point Cloud Representations via Self-Supervised Geometric Augmentation [15.881442863961531]
領域間の点雲表現の幾何学的不変性を誘導する新しいスキームを提案する。
一方、点雲のセントロイドシフトを軽減するために、拡張サンプルの距離の変換を予測するための新しいプレテキストタスクが提案されている。
一方,我々は幾何学的に拡張された点雲上での自己教師付き関係学習の統合を開拓した。
論文 参考訳(メタデータ) (2024-09-11T02:39:19Z) - INPC: Implicit Neural Point Clouds for Radiance Field Rendering [5.64500060725726]
現実世界のシーンを再現し、新しい視点で合成するための新しいアプローチを提案する。
本研究では,連続オクツリー型確率場とマルチ解像度ハッシュグリッドにおける点雲を暗黙的に符号化するハイブリッドシーン表現を提案する。
本手法は,対話的なフレームレートで高速な推論を実現し,さらに性能を高めるために露骨な点雲を抽出することができる。
論文 参考訳(メタデータ) (2024-03-25T15:26:32Z) - Patch-Wise Point Cloud Generation: A Divide-and-Conquer Approach [83.05340155068721]
分割・分散アプローチを用いた新しい3dポイントクラウド生成フレームワークを考案する。
すべてのパッチジェネレータは学習可能な事前情報に基づいており、幾何学的プリミティブの情報を取得することを目的としている。
最も人気のあるポイントクラウドデータセットであるShapeNetのさまざまなオブジェクトカテゴリに関する実験結果は、提案したパッチワイドポイントクラウド生成の有効性を示している。
論文 参考訳(メタデータ) (2023-07-22T11:10:39Z) - StarNet: Style-Aware 3D Point Cloud Generation [82.30389817015877]
StarNetは、マッピングネットワークを使用して高忠実度および3Dポイントクラウドを再構築し、生成することができる。
我々のフレームワークは、クラウドの再構築と生成タスクにおいて、様々なメトリクスで同等の最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2023-03-28T08:21:44Z) - Controllable Mesh Generation Through Sparse Latent Point Diffusion
Models [105.83595545314334]
メッシュ生成のための新しいスパース潜在点拡散モデルを設計する。
私たちの重要な洞察は、ポイントクラウドをメッシュの中間表現と見なし、代わりにポイントクラウドの分布をモデル化することです。
提案したスパース潜在点拡散モデルにより,生成品質と制御性において優れた性能が得られる。
論文 参考訳(メタデータ) (2023-03-14T14:25:29Z) - Autoregressive 3D Shape Generation via Canonical Mapping [92.91282602339398]
トランスフォーマーは、画像、音声、テキスト生成など、様々な生成タスクで顕著なパフォーマンスを示している。
本稿では,変圧器のパワーをさらに活用し,それを3Dポイントクラウド生成のタスクに活用することを目的とする。
条件付き形状生成への応用として,本モデルを簡単にマルチモーダル形状完成に拡張することができる。
論文 参考訳(メタデータ) (2022-04-05T03:12:29Z) - Differentiable Convolution Search for Point Cloud Processing [114.66038862207118]
本稿では,点雲上での新しい差分畳み込み探索パラダイムを提案する。
純粋にデータ駆動型であり、幾何学的形状モデリングに適した畳み込みのグループを自動生成することができる。
また,内部畳み込みと外部アーキテクチャの同時探索のための共同最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-29T14:42:03Z) - PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers [81.71904691925428]
本稿では,ポイントクラウドの完了をセット・ツー・セットの翻訳問題として再定義する手法を提案する。
我々はまた、ポイントクラウド補完のためにトランスフォーマーエンコーダデコーダアーキテクチャを採用するPoinTrと呼ばれる新しいモデルも設計している。
提案手法は,新しいベンチマークと既存ベンチマークの両方において,最先端の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2021-08-19T17:58:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。