論文の概要: Point Cloud Synthesis Using Inner Product Transforms
- arxiv url: http://arxiv.org/abs/2410.18987v2
- Date: Tue, 11 Feb 2025 09:03:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:04:25.710131
- Title: Point Cloud Synthesis Using Inner Product Transforms
- Title(参考訳): 内積変換を用いた点雲合成
- Authors: Ernst Röell, Bastian Rieck,
- Abstract要約: 内部積を用いた点雲の幾何学的位相特性を符号化する新しい手法を開発した。
我々のエンコーディングは、再構成、生成、推論といった典型的なタスクにおいて、既存の手法よりも桁違いに高速な推論時間で高品質である。
- 参考スコア(独自算出の注目度): 13.608942872770855
- License:
- Abstract: Point-cloud synthesis, i.e. the generation of novel point clouds from an input distribution, remains a challenging task, for which numerous complex machine-learning models have been devised. We develop a novel method that encodes geometrical-topological characteristics of point clouds using inner products, leading to a highly-efficient point cloud representation with provable expressivity properties. Integrated into deep learning models, our encoding exhibits high quality in typical tasks like reconstruction, generation, and interpolation, with inference times orders of magnitude faster than existing methods.
- Abstract(参考訳): 点雲合成、すなわち入力分布からの新規点雲の生成は依然として困難な課題であり、複雑な機械学習モデルが数多く考案されている。
本研究では,内部積を用いた点雲の幾何学的トポロジカルな特性を符号化し,高効率な点雲表現を実現する手法を開発した。
ディープラーニングモデルに統合された符号化は、再構成、生成、補間といった典型的なタスクにおいて、既存の手法よりもはるかに高速な推論時間で高品質であることを示す。
関連論文リスト
- Differentiable Euler Characteristic Transforms for Shape Classification [13.608942872770855]
オイラー特性変換(ECT)は、形状とグラフの幾何学的特徴と位相的特徴を組み合わせた強力な表現であることが証明されている。
我々は,ECTをエンドツーエンドで学習できる新しい計算層を開発した。
論文 参考訳(メタデータ) (2023-10-11T16:23:07Z) - Curve Your Attention: Mixed-Curvature Transformers for Graph
Representation Learning [77.1421343649344]
本稿では,一定曲率空間の積を完全に操作するトランスフォーマーの一般化を提案する。
また、非ユークリッド注意に対するカーネル化されたアプローチを提供し、ノード数とエッジ数に線形に時間とメモリコストでモデルを実行できるようにします。
論文 参考訳(メタデータ) (2023-09-08T02:44:37Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
本稿では,データセットからのインスタンスのバッチを進化状態にエンコードするエネルギー制約拡散モデルを提案する。
任意のインスタンス対間の対拡散強度に対する閉形式最適推定を示唆する厳密な理論を提供する。
各種タスクにおいて優れた性能を有する汎用エンコーダバックボーンとして,本モデルの適用性を示す実験を行った。
論文 参考訳(メタデータ) (2023-01-23T15:18:54Z) - Atomic structure generation from reconstructing structural fingerprints [1.2128971613239876]
本稿では、原子中心対称性関数を表現として、条件付き変分オートエンコーダを生成モデルとして、エンドツーエンド構造生成手法を提案する。
我々は、概念実証として、サブナノメーターPtナノ粒子の新規で有効な原子構造を生成することに成功した。
論文 参考訳(メタデータ) (2022-07-27T00:42:59Z) - ComplexGen: CAD Reconstruction by B-Rep Chain Complex Generation [28.445041795260906]
我々は,境界表現(B-Rep)におけるCADモデルの再構成を,異なる順序の幾何学的プリミティブの検出とみなす。
このような包括的構造をモデル化することにより,より完全かつ規則化された再構築を実現することができることを示す。
論文 参考訳(メタデータ) (2022-05-29T05:30:33Z) - Autoregressive 3D Shape Generation via Canonical Mapping [92.91282602339398]
トランスフォーマーは、画像、音声、テキスト生成など、様々な生成タスクで顕著なパフォーマンスを示している。
本稿では,変圧器のパワーをさらに活用し,それを3Dポイントクラウド生成のタスクに活用することを目的とする。
条件付き形状生成への応用として,本モデルを簡単にマルチモーダル形状完成に拡張することができる。
論文 参考訳(メタデータ) (2022-04-05T03:12:29Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
単純複体は多方向順序関係を明示的にエンコードするグラフの高次元一般化と見なすことができる。
単体錯体の$k$-homological特徴によってパラメータ化された関数のグラフ畳み込みモデルを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:59:41Z) - Disentangling Geometric Deformation Spaces in Generative Latent Shape
Models [5.582957809895198]
3Dオブジェクトの完全な表現には、解釈可能な方法で変形の空間を特徴づける必要がある。
本研究では,物体形状の空間を剛性方向,非剛性ポーズ,内在的な形状に分解する3次元形状の不整合の事前生成モデルを改善する。
得られたモデルは生の3D形状からトレーニングできる。
論文 参考訳(メタデータ) (2021-02-27T06:54:31Z) - Dense Non-Rigid Structure from Motion: A Manifold Viewpoint [162.88686222340962]
Non-Rigid Structure-from-Motion (NRSfM) 問題は、複数のフレームにまたがる2次元特徴対応から変形物体の3次元形状を復元することを目的としている。
提案手法は,ノイズに対する精度,スケーラビリティ,堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2020-06-15T09:15:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。