論文の概要: Deterministic Fokker-Planck Transport -- With Applications to Sampling, Variational Inference, Kernel Mean Embeddings & Sequential Monte Carlo
- arxiv url: http://arxiv.org/abs/2410.18993v1
- Date: Fri, 11 Oct 2024 13:06:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-03 08:19:37.563622
- Title: Deterministic Fokker-Planck Transport -- With Applications to Sampling, Variational Inference, Kernel Mean Embeddings & Sequential Monte Carlo
- Title(参考訳): 決定論的フォッカー・プランク輸送-サンプリング、変分推論、カーネル平均埋め込みおよびシークエンシャルモンテカルロへの応用
- Authors: Ilja Klebanov,
- Abstract要約: 我々は,Fokker-Planck方程式を連続性方程式として再構成し,粒子流法における関連する速度場を自然に提案する。
結果として生じる確率フローODEは魅力的な特性を提供するが、ほとんどの実用的な応用において難解な現在の確率密度を評価することに頼っている。
これらの制限を変動推論、カーネル平均埋め込み、シーケンシャルなモンテカルロといったコンテキストの利点に変換する機会を明らかにする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The Fokker-Planck equation can be reformulated as a continuity equation, which naturally suggests using the associated velocity field in particle flow methods. While the resulting probability flow ODE offers appealing properties - such as defining a gradient flow of the Kullback-Leibler divergence between the current and target densities with respect to the 2-Wasserstein distance - it relies on evaluating the current probability density, which is intractable in most practical applications. By closely examining the drawbacks of approximating this density via kernel density estimation, we uncover opportunities to turn these limitations into advantages in contexts such as variational inference, kernel mean embeddings, and sequential Monte Carlo.
- Abstract(参考訳): フォッカー・プランク方程式は連続性方程式として再定式化することができ、これは自然に粒子流法における関連する速度場を使うことを示唆する。
結果として生じる確率フローODEは、2-ワッサーシュタイン距離に関する電流とターゲット密度の間のクルバック・リーバーの勾配流を定義するなど、魅力的な特性を提供するが、これはほとんどの実用的な応用において難易度である現在の確率密度を評価することに依存する。
カーネル密度推定によるこの密度の近似の欠点を詳しく調べることで、これらの制限を変分推論、カーネル平均埋め込み、シーケンシャルモンテカルロといった文脈における利点に変換する機会を見出した。
関連論文リスト
- Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals [3.4240632942024685]
ポテンシャル関数が支配する分布からサンプリングする問題を考察する。
本研究は, 決定論的な楽譜に基づくMCMC法を提案し, 粒子に対する決定論的進化をもたらす。
論文 参考訳(メタデータ) (2023-08-28T23:51:33Z) - Sobolev Space Regularised Pre Density Models [51.558848491038916]
本研究では,ソボレフ法則の正則化に基づく非パラメトリック密度推定法を提案する。
この方法は統計的に一貫したものであり、帰納的検証モデルを明確かつ一貫したものにしている。
論文 参考訳(メタデータ) (2023-07-25T18:47:53Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Building Normalizing Flows with Stochastic Interpolants [11.22149158986164]
一対の基底分布と対象分布の間の連続時間正規化フローに基づく単純な2次モデルを提案する。
この流れの速度場は、基地と目標の間を有限時間で補間する時間依存分布の確率電流から推定される。
論文 参考訳(メタデータ) (2022-09-30T16:30:31Z) - Self-Consistency of the Fokker-Planck Equation [117.17004717792344]
フォッカー・プランク方程式は、伊藤過程の密度進化を支配している。
地絡速度場は固定点方程式の解であることを示すことができる。
本稿では,この概念を利用して仮説速度場のポテンシャル関数を設計する。
論文 参考訳(メタデータ) (2022-06-02T03:44:23Z) - Deterministic Langevin Monte Carlo with Normalizing Flows for Bayesian
Inference [6.445605125467574]
本稿では,コストの高い確率に対する汎用推論アルゴリズムを提案する。
本手法は, 美術品の採取方法と競合することを示す。
論文 参考訳(メタデータ) (2022-05-27T21:21:03Z) - Self-Supervised Robust Scene Flow Estimation via the Alignment of
Probability Density Functions [11.69144204466843]
本稿では,一対の連続点雲に対する自己監督型シーンフロー推定手法を提案する。
本手法は,現実世界の環境において,チャンファー距離とアースモーバー距離よりも顕著に向上する。
論文 参考訳(メタデータ) (2022-03-23T04:53:26Z) - A blob method method for inhomogeneous diffusion with applications to
multi-agent control and sampling [0.6562256987706128]
重み付き多孔質媒質方程式(WPME)に対する決定論的粒子法を開発し,その収束性を時間間隔で証明する。
提案手法は,マルチエージェントカバレッジアルゴリズムや確率測定のサンプリングに自然に応用できる。
論文 参考訳(メタデータ) (2022-02-25T19:49:05Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Large-Scale Wasserstein Gradient Flows [84.73670288608025]
ワッサーシュタイン勾配流を近似するスケーラブルなスキームを導入する。
我々のアプローチは、JKOステップを識別するために、入力ニューラルネットワーク(ICNN)に依存しています。
その結果、勾配拡散の各ステップで測定値からサンプリングし、その密度を計算することができる。
論文 参考訳(メタデータ) (2021-06-01T19:21:48Z) - Variational Transport: A Convergent Particle-BasedAlgorithm for Distributional Optimization [106.70006655990176]
分散最適化問題は機械学習や統計学で広く発生する。
本稿では,変分輸送と呼ばれる粒子に基づく新しいアルゴリズムを提案する。
目的関数がpolyak-Lojasiewicz (PL) (Polyak, 1963) の機能バージョンと滑らかな条件を満たすとき、変分輸送は線形に収束することを示す。
論文 参考訳(メタデータ) (2020-12-21T18:33:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。