論文の概要: Bio2Token: All-atom tokenization of any biomolecular structure with Mamba
- arxiv url: http://arxiv.org/abs/2410.19110v2
- Date: Tue, 10 Dec 2024 20:32:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 13:59:47.743695
- Title: Bio2Token: All-atom tokenization of any biomolecular structure with Mamba
- Title(参考訳): Bio2Token:Mambaを用いた生体分子構造の全原子トークン化
- Authors: Andrew Liu, Axel Elaldi, Nathan Russell, Olivia Viessmann,
- Abstract要約: 完全タンパク質,RNAおよび小分子構造の原子レベルのトークン化を学習する量子化オートエンコーダを開発した。
単純なマンバ状態空間モデルアーキテクチャはSE(3)不変のIPAアーキテクチャと比較して効率的であることを示す。
バイオ2トケンの学習された構造トークンは、将来全ての原子生成モデルの入力として機能する可能性がある。
- 参考スコア(独自算出の注目度): 3.039173168183899
- License:
- Abstract: Efficient encoding and representation of large 3D molecular structures with high fidelity is critical for biomolecular design applications. Despite this, many representation learning approaches restrict themselves to modeling smaller systems or use coarse-grained approximations of the systems, for example modeling proteins at the resolution of amino acid residues rather than at the level of individual atoms. To address this, we develop quantized auto-encoders that learn atom-level tokenizations of complete proteins, RNA and small molecule structures with reconstruction accuracies well below 1 Angstrom. We demonstrate that a simple Mamba state space model architecture is efficient compared to an SE(3)-invariant IPA architecture, reaches competitive accuracies and can scale to systems with almost 100,000 atoms. The learned structure tokens of bio2token may serve as the input for all-atom generative models in the future.
- Abstract(参考訳): 高忠実度3次元分子構造の効率的な符号化と表現は生体分子設計への応用において重要である。
これにもかかわらず、多くの表現学習アプローチは、より小さなシステムや、個々の原子のレベルでではなくアミノ酸残基の分解でタンパク質をモデル化するなど、システムの粗粒度近似を使用することに制限されている。
そこで我々は, 完全タンパク質, RNA, 小分子構造の原子レベルのトークン化を1アングストロームよりはるかに低い精度で学習する量子化オートエンコーダを開発した。
単純なマンバ状態空間モデルアーキテクチャはSE(3)不変のIPAアーキテクチャと比較して効率的であり、競合的精度に到達し、約10万の原子を持つシステムにスケール可能であることを実証する。
バイオ2トケンの学習された構造トークンは、将来全ての原子生成モデルの入力として機能する可能性がある。
関連論文リスト
- GraphXForm: Graph transformer for computer-aided molecular design with application to extraction [73.1842164721868]
本稿では,デコーダのみのグラフトランスフォーマアーキテクチャであるGraphXFormについて述べる。
液液抽出のための2つの溶媒設計課題について評価し,4つの最先端分子設計技術より優れていることを示した。
論文 参考訳(メタデータ) (2024-11-03T19:45:15Z) - CryoChains: Heterogeneous Reconstruction of Molecular Assembly of
Semi-flexible Chains from Cryo-EM Images [3.0828074702828623]
分子鎖の剛体変換により生体分子の大きな変形をコードするCryoChainsを提案する。
ヒトGABAtextsubscriptBおよび熱ショックタンパク質のデータ実験により、CryoChainsは生体分子の不均一な構造を生化学的に定量化できることが示された。
論文 参考訳(メタデータ) (2023-06-12T17:57:12Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
本稿では,分子系の平衡分布を予測するために,分散グラフマー(DiG)と呼ばれる新しいディープラーニングフレームワークを導入する。
DiGはディープニューラルネットワークを用いて分子系の記述子に条件付き平衡分布に単純な分布を変換する。
論文 参考訳(メタデータ) (2023-06-08T17:12:08Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule Representations [68.32093648671496]
分子に固有の二重レベル構造を考慮に入れたGODEを導入する。
分子は固有のグラフ構造を持ち、より広い分子知識グラフ内のノードとして機能する。
異なるグラフ構造上の2つのGNNを事前学習することにより、GODEは対応する知識グラフサブ構造と分子構造を効果的に融合させる。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
本稿では,原子の特徴,2次元離散分子構造,および3次元連続分子座標を含む分子の包括的表現を生成する新しいモデルを提案する。
拡散過程を認知するための新しいグラフトランスフォーマーアーキテクチャを提案する。
我々のモデルは、安定で多様な分子を設計するための有望なアプローチであり、分子モデリングの幅広いタスクに適用できる。
論文 参考訳(メタデータ) (2023-04-28T04:25:57Z) - Heterogeneous reconstruction of deformable atomic models in Cryo-EM [30.864688165021054]
変形を少数の集団運動に還元した原子論的な表現に基づく異種再構成法について述べる。
各分布について、我々の手法が原子レベルの精度で中間原子モデルを再カプセル化可能であることを示す。
論文 参考訳(メタデータ) (2022-09-29T22:35:35Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z) - Transferring Chemical and Energetic Knowledge Between Molecular Systems
with Machine Learning [5.27145343046974]
本稿では,単純な分子システムから得られた知識をより複雑なものに伝達するための新しい手法を提案する。
我々は、高低自由エネルギー状態の分類に焦点をあてる。
以上の結果より, トリアラニンからデカアラニン系への移行学習において, 0.92 の顕著な AUC が得られた。
論文 参考訳(メタデータ) (2022-05-06T16:21:00Z) - Scalable Fragment-Based 3D Molecular Design with Reinforcement Learning [68.8204255655161]
分子構築に階層的エージェントを用いるスケーラブルな3D設計のための新しいフレームワークを提案する。
様々な実験において、エネルギーのみを考慮に入れたエージェントが、100以上の原子を持つ分子を効率よく生成できることが示されている。
論文 参考訳(メタデータ) (2022-02-01T18:54:24Z) - A silicon qubit platform for in situ single molecule structure
determination [0.7187911114620571]
単分子レベルでの一般、不均一、過渡的または内在的に混乱したタンパク質系の個々のコンフォメーションのインスタンスをイメージングすることは、構造生物学における顕著な課題の1つである。
ここでは、シリコンベースのスピン量子ビットの利点を取り入れた単一の分子イメージングプラットフォームを設計することで、この問題に取り組む。
我々は,本プラットフォームが自然環境における個々の分子系のスケーラブルな原子レベル構造決定を可能にすることを,詳細なシミュレーションを通じて実証した。
論文 参考訳(メタデータ) (2021-12-07T10:42:09Z) - Hierarchical, rotation-equivariant neural networks to select structural
models of protein complexes [6.092214762701847]
タンパク質複合体の正確なモデルを特定するために,全ての原子の3次元位置から直接学習する機械学習手法を提案する。
我々のネットワークは、考えられるモデルの大きな集合のうち、正確な構造モデルの同定を大幅に改善する。
論文 参考訳(メタデータ) (2020-06-05T20:17:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。