論文の概要: CryoChains: Heterogeneous Reconstruction of Molecular Assembly of
Semi-flexible Chains from Cryo-EM Images
- arxiv url: http://arxiv.org/abs/2306.07274v2
- Date: Sat, 15 Jul 2023 20:43:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-18 22:02:48.848655
- Title: CryoChains: Heterogeneous Reconstruction of Molecular Assembly of
Semi-flexible Chains from Cryo-EM Images
- Title(参考訳): Cryo-EM画像からの半フレキシブル鎖の分子集合の異種再構築
- Authors: Bongjin Koo, Julien Martel, Ariana Peck, Axel Levy, Fr\'ed\'eric
Poitevin, Nina Miolane
- Abstract要約: 分子鎖の剛体変換により生体分子の大きな変形をコードするCryoChainsを提案する。
ヒトGABAtextsubscriptBおよび熱ショックタンパク質のデータ実験により、CryoChainsは生体分子の不均一な構造を生化学的に定量化できることが示された。
- 参考スコア(独自算出の注目度): 3.0828074702828623
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cryogenic electron microscopy (cryo-EM) has transformed structural biology by
allowing to reconstruct 3D biomolecular structures up to near-atomic
resolution. However, the 3D reconstruction process remains challenging, as the
3D structures may exhibit substantial shape variations, while the 2D image
acquisition suffers from a low signal-to-noise ratio, requiring to acquire very
large datasets that are time-consuming to process. Current reconstruction
methods are precise but computationally expensive, or faster but lack a
physically-plausible model of large molecular shape variations. To fill this
gap, we propose CryoChains that encodes large deformations of biomolecules via
rigid body transformation of their chains, while representing their finer shape
variations with the normal mode analysis framework of biophysics. Our synthetic
data experiments on the human GABA\textsubscript{B} and heat shock protein show
that CryoChains gives a biophysically-grounded quantification of the
heterogeneous conformations of biomolecules, while reconstructing their 3D
molecular structures at an improved resolution compared to the current fastest,
interpretable deep learning method.
- Abstract(参考訳): 低温電子顕微鏡(cryo-EM)は、3次元の生体分子構造を原子に近い分解能まで再構成することで構造生物学を変容させた。
しかし、3D画像取得は低信号-雑音比に悩まされており、処理に要する非常に大きなデータセットを取得する必要がある。
現在の再構成法は精度は高いが、計算コストは高く、より速いが、大きな分子形状の物理的モデルが欠如している。
このギャップを埋めるために,鎖の剛体変換によって生体分子の大きな変形を符号化するCryoChainを提案する。
ヒトGABA\textsubscript{B} と熱ショックタンパク質の合成データ実験により、CryoChains は生体分子の不均一な構造を生化学的に定量化するとともに、3次元分子構造を現在の高速で解釈可能な深層学習法と比較して改良した解像度で再構築した。
関連論文リスト
- CryoBench: Diverse and challenging datasets for the heterogeneity problem in cryo-EM [3.424647356090208]
核電子顕微鏡(cryo-EM)は、画像データから高分解能の3次元生体分子構造を決定するための強力な技術である。
CryoBenchは、Cryo-EMにおける異種再構築のためのデータセット、メトリクス、パフォーマンスベンチマークのスイートである。
論文 参考訳(メタデータ) (2024-08-10T11:48:14Z) - UniIF: Unified Molecule Inverse Folding [67.60267592514381]
全分子の逆折り畳みのための統一モデルUniIFを提案する。
提案手法は,全タスクにおける最先端手法を超越した手法である。
論文 参考訳(メタデータ) (2024-05-29T10:26:16Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
本稿では,原子の特徴,2次元離散分子構造,および3次元連続分子座標を含む分子の包括的表現を生成する新しいモデルを提案する。
拡散過程を認知するための新しいグラフトランスフォーマーアーキテクチャを提案する。
我々のモデルは、安定で多様な分子を設計するための有望なアプローチであり、分子モデリングの幅広いタスクに適用できる。
論文 参考訳(メタデータ) (2023-04-28T04:25:57Z) - CryoFormer: Continuous Heterogeneous Cryo-EM Reconstruction using
Transformer-based Neural Representations [49.49939711956354]
核電子顕微鏡(cryo-EM)は、タンパク質やその他の生体分子の3D構造を高分解能で再構築することを可能にする。
3次元構造の連続的な動きをノイズやランダムに配向した2次元Creo-EM画像から再構成することは依然として困難である。
我々はCryoFormerを提案する。CryoFormerは連続したヘテロジニアスCryo-EM再構成のための新しいアプローチである。
論文 参考訳(メタデータ) (2023-03-28T18:59:17Z) - Amortized Inference for Heterogeneous Reconstruction in Cryo-EM [36.911133113707045]
低温電子顕微鏡(cryo-EM)は、タンパク質やその他の生命の構成要素の力学に関する洞察を提供する。
生物分子のポーズ、3次元構造、配座の不均一性を共同で推定するアルゴリズムの課題は未解決のままである。
この方法であるCryoFIREは、不動化フレームワークで未知のポーズを伴って、ab initioheregeneous Restructionを行う。
精度を損なうことなく、何百万もの画像を含むデータセットに対して、1桁のスピードアップを提供できることを示す。
論文 参考訳(メタデータ) (2022-10-13T22:06:38Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
タンパク質-リガンド複合体構造を直接予測できる計算手法であるNeuralPLexerを提案する。
我々の研究は、データ駆動型アプローチがタンパク質と小分子の構造的協調性を捉え、酵素や薬物分子などの設計を加速させる可能性を示唆している。
論文 参考訳(メタデータ) (2022-09-30T01:46:38Z) - Heterogeneous reconstruction of deformable atomic models in Cryo-EM [30.864688165021054]
変形を少数の集団運動に還元した原子論的な表現に基づく異種再構成法について述べる。
各分布について、我々の手法が原子レベルの精度で中間原子モデルを再カプセル化可能であることを示す。
論文 参考訳(メタデータ) (2022-09-29T22:35:35Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z) - Disentangling semantic features of macromolecules in Cryo-Electron
Tomography [7.804210995893708]
マクロ分子のセマンティックな特徴を明示的に切り離すことは、マクロ分子の下流解析を行う上で重要である。
本稿では, 高分子の構造, 配向, シフトを明示的に切り離す3次元空間変動オートエンコーダを提案する。
論文 参考訳(メタデータ) (2021-06-27T10:41:26Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Deep learning based mixed-dimensional GMM for characterizing variability
in CryoEM [0.0]
CryoEMは、コンフォメーション状態とコンフォメーション状態の異なる個々のマクロ分子を直接可視化する。
タンパク質や複合体のコンフォメーションランドスケープを決定する機械学習アルゴリズムを提案する。
本手法をいくつかの異なる生体分子系に応用し,様々なスケールで組成変化およびコンフォメーション変化を探索する。
論文 参考訳(メタデータ) (2021-01-25T19:05:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。