Functional Brain Network Identification in Opioid Use Disorder Using Machine Learning Analysis of Resting-State fMRI BOLD Signals
- URL: http://arxiv.org/abs/2410.19147v3
- Date: Tue, 11 Mar 2025 17:52:25 GMT
- Title: Functional Brain Network Identification in Opioid Use Disorder Using Machine Learning Analysis of Resting-State fMRI BOLD Signals
- Authors: Ahmed Temtam, Megan A. Witherow, Liangsuo Ma, M. Shibly Sadique, F. Gerard Moeller, Khan M. Iftekharuddin,
- Abstract summary: This study employs data-driven machine learning (ML) for time-frequency analysis of local neural activity within key functional networks.<n>We obtain time-frequency features based on rs-fMRI BOLD signals from the default mode network (DMN), salience network (SN), and executive control network (ECN)<n>The DMN and SN show the most discriminative power, significantly outperforming chance baselines with mean F1 scores of 0.7097 and 0.7018, respectively.
- Score: 0.5870004969741518
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the neurobiology of opioid use disorder (OUD) using resting-state functional magnetic resonance imaging (rs-fMRI) may help inform treatment strategies to improve patient outcomes. Recent literature suggests time-frequency characteristics of rs-fMRI blood oxygenation level-dependent (BOLD) signals may offer complementary information to traditional analysis techniques. However, existing studies of OUD analyze BOLD signals using measures computed across all time points. This study, for the first time in the literature, employs data-driven machine learning (ML) for time-frequency analysis of local neural activity within key functional networks to differentiate OUD subjects from healthy controls (HC). We obtain time-frequency features based on rs-fMRI BOLD signals from the default mode network (DMN), salience network (SN), and executive control network (ECN) for 31 OUD and 45 HC subjects. Then, we perform 5-fold cross-validation classification (OUD vs. HC) experiments to study the discriminative power of functional network features while taking into consideration significant demographic features. The DMN and SN show the most discriminative power, significantly (p < 0.05) outperforming chance baselines with mean F1 scores of 0.7097 and 0.7018, respectively, and mean AUCs of 0.8378 and 0.8755, respectively. Follow-up Boruta ML analysis of selected time-frequency (wavelet) features reveals significant (p < 0.05) detail coefficients for all three functional networks, underscoring the need for ML and time-frequency analysis of rs-fMRI BOLD signals in the study of OUD.
Related papers
- Feasibility Analysis of Federated Neural Networks for Explainable Detection of Atrial Fibrillation [1.6053176639259055]
Early detection of atrial fibrillation (AFib) is challenging due to its asymptomatic and paroxysmal nature.
This study assesses the feasibility of training a neural network on a Federated Learning (FL) platform to detect AFib using raw ECG data.
arXiv Detail & Related papers (2024-10-14T15:06:10Z) - Diagnosis and Pathogenic Analysis of Autism Spectrum Disorder Using Fused Brain Connection Graph [14.00990852115585]
We propose a model for diagnosing Autism spectrum disorder (ASD) using multimodal magnetic resonance imaging (MRI) data.
Our approach integrates brain connectivity data fromDTI and functional MRI, employing graph neural networks (GNNs) for fused graph classification.
We analyze network node centrality, calculating degree, subgraph, and eigenvector centralities on a bimodal fused brain graph to identify pathological regions linked to ASD.
arXiv Detail & Related papers (2024-09-22T01:23:46Z) - Classification of Alzheimer's Dementia vs. Healthy subjects by studying structural disparities in fMRI Time-Series of DMN [4.349838917565205]
Time series from different regions of interest can reveal significant differences between healthy and unhealthy people.
The hypothesis is that differences in the level of structure in the time series can lead to discrimination between subject groups.
An autoencoder-based model is utilized to learn efficient representations of data by training the network to reconstruct its input data.
arXiv Detail & Related papers (2024-07-29T13:22:49Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Machine Learning-based Estimation of Respiratory Fluctuations in a Healthy Adult Population using BOLD fMRI and Head Motion Parameters [39.96015789655091]
In many fMRI studies, respiratory signals are often missing or of poor quality.
It could be highly beneficial to have a tool to extract respiratory variation (RV) waveforms directly from fMRI data without the need for peripheral recording devices.
This study proposes a CNN model for reconstruction of RV waveforms using head motion parameters and BOLD signals.
arXiv Detail & Related papers (2024-04-30T21:53:11Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - Spatial-Temporal DAG Convolutional Networks for End-to-End Joint
Effective Connectivity Learning and Resting-State fMRI Classification [42.82118108887965]
Building comprehensive brain connectomes has proved to be fundamental importance in resting-state fMRI (rs-fMRI) analysis.
We model the brain network as a directed acyclic graph (DAG) to discover direct causal connections between brain regions.
We propose Spatial-Temporal DAG Convolutional Network (ST-DAGCN) to jointly infer effective connectivity and classify rs-fMRI time series.
arXiv Detail & Related papers (2023-12-16T04:31:51Z) - Leveraging Brain Modularity Prior for Interpretable Representation
Learning of fMRI [38.236414924531196]
Resting-state functional magnetic resonance imaging (rs-fMRI) can reflect spontaneous neural activities in brain.
Previous studies propose to extract fMRI representations through diverse machine/deep learning methods for subsequent analysis.
This paper proposes a Brain Modularity-constrained dynamic Representation learning (BMR) framework for interpretable fMRI analysis.
arXiv Detail & Related papers (2023-06-24T23:45:47Z) - Fusing Structural and Functional Connectivities using Disentangled VAE
for Detecting MCI [9.916963496386089]
A novel hierarchical structural-functional connectivity fusing (HSCF) model is proposed to construct brain structural-functional connectivity matrices.
Results from a wide range of tests performed on the public Alzheimer's Disease Neuroimaging Initiative database show that the proposed model performs better than competing approaches.
arXiv Detail & Related papers (2023-06-16T05:22:25Z) - Exploiting the Brain's Network Structure for Automatic Identification of
ADHD Subjects [70.37277191524755]
We show that the brain can be modeled as a functional network, and certain properties of the networks differ in ADHD subjects from control subjects.
We train our classifier with 776 subjects and test on 171 subjects provided by The Neuro Bureau for the ADHD-200 challenge.
arXiv Detail & Related papers (2023-06-15T16:22:57Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - New Interpretable Patterns and Discriminative Features from Brain
Functional Network Connectivity Using Dictionary Learning [21.676573007839544]
ICA can identify patterns that can discriminate between healthy controls (HC) and patients with various mental disorders such as schizophrenia (Sz)
dictionary learning (DL) enables the discovery of hidden information in data using learnable basis signals through the use of sparsity.
We present a new method that leverages ICA and DL for the identification of directly interpretable patterns to discriminate between the HC and Sz groups.
arXiv Detail & Related papers (2022-11-10T19:49:16Z) - Hierarchical Graph Convolutional Network Built by Multiscale Atlases for
Brain Disorder Diagnosis Using Functional Connectivity [48.75665245214903]
We propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis.
We first use a set of well-defined multiscale atlases to compute multiscale FCNs.
Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling.
arXiv Detail & Related papers (2022-09-22T04:17:57Z) - Exploring traditional machine learning for identification of
pathological auscultations [0.39577682622066246]
Digital 6-channel auscultations of 45 patients were used in various machine learning scenarios.
The aim was to distinguish between normal and anomalous pulmonary sounds.
Supervised models showed a consistent advantage over unsupervised ones.
arXiv Detail & Related papers (2022-09-01T18:03:21Z) - GATE: Graph CCA for Temporal SElf-supervised Learning for
Label-efficient fMRI Analysis [25.4835612758922]
In population graph-based disease analysis, graph convolutional neural networks (GCNs) have achieved remarkable success.
We propose a novel and theory-driven self-supervised learning framework on GCNs, namely Graph CCA for Temporal self-supervised learning on fMRI analysis GATE.
Our method is tested on two independent fMRI datasets, demonstrating superior performance on autism and dementia diagnosis.
arXiv Detail & Related papers (2022-03-17T02:23:30Z) - Identifying Autism Spectrum Disorder Based on Individual-Aware
Down-Sampling and Multi-Modal Learning [4.310840361752551]
We propose a novel feature extraction method for fMRI that can learn a personalized lowe-resolution representation of the entire brain networking.
The present model has achieved a mean classification accuracy of 85.95% and a mean AUC of 0.92, which is better than the state-of-the-art methods.
arXiv Detail & Related papers (2021-09-19T14:22:55Z) - Multi-Sample Online Learning for Spiking Neural Networks based on
Generalized Expectation Maximization [42.125394498649015]
Spiking Neural Networks (SNNs) capture some of the efficiency of biological brains by processing through binary neural dynamic activations.
This paper proposes to leverage multiple compartments that sample independent spiking signals while sharing synaptic weights.
The key idea is to use these signals to obtain more accurate statistical estimates of the log-likelihood training criterion, as well as of its gradient.
arXiv Detail & Related papers (2021-02-05T16:39:42Z) - Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis [11.85489505372321]
We train a-temporal graph convolutional network (ST-GCN) on short sub-sequences of the BOLD time series to model the non-stationary nature of functional connectivity.
St-GCN is significantly more accurate than common approaches in predicting gender and age based on BOLD signals.
arXiv Detail & Related papers (2020-03-24T01:56:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.