Structured Diffusion Models with Mixture of Gaussians as Prior Distribution
- URL: http://arxiv.org/abs/2410.19149v1
- Date: Thu, 24 Oct 2024 20:34:06 GMT
- Title: Structured Diffusion Models with Mixture of Gaussians as Prior Distribution
- Authors: Nanshan Jia, Tingyu Zhu, Haoyu Liu, Zeyu Zheng,
- Abstract summary: We develop a simple-to-implement training procedure that smoothly accommodates the use of mixed Gaussian as prior.
Our method is shown to be robust to mis-specifications and in particular suits situations where training resources are limited or faster training in real time is desired.
- Score: 13.052085651071135
- License:
- Abstract: We propose a class of structured diffusion models, in which the prior distribution is chosen as a mixture of Gaussians, rather than a standard Gaussian distribution. The specific mixed Gaussian distribution, as prior, can be chosen to incorporate certain structured information of the data. We develop a simple-to-implement training procedure that smoothly accommodates the use of mixed Gaussian as prior. Theory is provided to quantify the benefits of our proposed models, compared to the classical diffusion models. Numerical experiments with synthetic, image and operational data are conducted to show comparative advantages of our model. Our method is shown to be robust to mis-specifications and in particular suits situations where training resources are limited or faster training in real time is desired.
Related papers
- Heavy-Tailed Diffusion Models [38.713884992630675]
We show that traditional diffusion and flow-matching models fail to capture heavy-tailed behavior.
We address this by repurposing the diffusion framework for heavy-tail estimation.
We introduce t-EDM and t-Flow, extensions of existing diffusion and flow models that employ a Student-t prior.
arXiv Detail & Related papers (2024-10-18T04:29:46Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
Diffusion processes are prone to generating samples that reflect biases in a training dataset.
We develop constrained diffusion models by imposing diffusion constraints based on desired distributions.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory [87.00653989457834]
Conditional diffusion models serve as the foundation of modern image synthesis and find extensive application in fields like computational biology and reinforcement learning.
Despite the empirical success, theory of conditional diffusion models is largely missing.
This paper bridges the gap by presenting a sharp statistical theory of distribution estimation using conditional diffusion models.
arXiv Detail & Related papers (2024-03-18T17:08:24Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
Diffusion models benefit from instillation of task-specific information into the score function to steer the sample generation towards desired properties.
This paper provides the first theoretical study towards understanding the influence of guidance on diffusion models in the context of Gaussian mixture models.
arXiv Detail & Related papers (2024-03-03T23:15:48Z) - Renormalizing Diffusion Models [0.7252027234425334]
We use diffusion models to learn inverse renormalization group flows of statistical and quantum field theories.
Our work provides an interpretation of multiscale diffusion models, and gives physically-inspired suggestions for diffusion models which should have novel properties.
arXiv Detail & Related papers (2023-08-23T18:02:31Z) - Diff-Instruct: A Universal Approach for Transferring Knowledge From
Pre-trained Diffusion Models [77.83923746319498]
We propose a framework called Diff-Instruct to instruct the training of arbitrary generative models.
We show that Diff-Instruct results in state-of-the-art single-step diffusion-based models.
Experiments on refining GAN models show that the Diff-Instruct can consistently improve the pre-trained generators of GAN models.
arXiv Detail & Related papers (2023-05-29T04:22:57Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
We provide the first rigorous analysis on approximation and generalization abilities of diffusion modeling.
We show that when the true density function belongs to the Besov space and the empirical score matching loss is properly minimized, the generated data distribution achieves the nearly minimax optimal estimation rates.
arXiv Detail & Related papers (2023-03-03T11:31:55Z) - Finite mixture of skewed sub-Gaussian stable distributions [0.0]
The proposed model contains the finite mixture of normal and skewed normal distributions.
It can be used as a powerful model for robust model-based clustering.
arXiv Detail & Related papers (2022-05-27T15:51:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.