論文の概要: Developing a Tutoring Dialog Dataset to Optimize LLMs for Educational Use
- arxiv url: http://arxiv.org/abs/2410.19231v1
- Date: Fri, 25 Oct 2024 00:40:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:38:00.141183
- Title: Developing a Tutoring Dialog Dataset to Optimize LLMs for Educational Use
- Title(参考訳): 教育用LDMの最適化のための学習用ダイアログデータセットの開発
- Authors: Menna Fateen, Tsunenori Mine,
- Abstract要約: 大規模言語モデル(LLM)は、スケーラブルな教育アプリケーションへの期待を示している。
本研究は,読解問題における1対1の指導に,より小型で手頃なLPMを用いることを検討した。
- 参考スコア(独自算出の注目度): 1.2277343096128712
- License:
- Abstract: Recent advances in large language models (LLMs) have shown promise for scalable educational applications, but their use in dialog-based tutoring systems remains challenging due to the need for effective pedagogical strategies and the high costs associated with expert-curated datasets. Our study explores the use of smaller, more affordable LLMs for one-on-one tutoring in the context of solving reading comprehension problems. We developed a synthetic tutoring dialog dataset, evaluated by human teachers, and fine-tuned a smaller LLM using this dataset. Furthermore, we conducted an interactive experiment comparing the performance of the fine-tuned model with a larger model in real-world tutoring scenarios. Our results show that the fine-tuned model performs on par with the larger model but at a lower cost, demonstrating a viable, cost-effective approach for implementing LLM-based tutoring systems in educational settings.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、スケーラブルな教育アプリケーションの実現を約束しているが、効果的な教育戦略の必要性と専門家が作成したデータセットに関連する高コストのために、ダイアログベースの学習システムでの利用は依然として困難である。
本研究は,読解問題における1対1の指導に,より小型で手頃なLPMを用いることを検討した。
そこで我々は,人間教師が評価する合成チューリング・ダイアログ・データセットを開発し,このデータセットを用いて小型のLDMを微調整した。
さらに, 実世界の学習シナリオにおいて, 微調整モデルと大規模モデルとの性能を比較したインタラクティブな実験を行った。
提案手法は,より大規模なモデルと同等だが,低コストで動作し,LLMベースの学習システムを教育環境に実装する上で,実用的で費用対効果の高いアプローチを示すものである。
関連論文リスト
- CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning [15.919493497867567]
本研究では,VALSEベンチマークを用いたマルチモーダル大規模言語モデル(MLLM)の性能評価を目的とした。
我々は,モデルサイズや事前学習データセットの異なる最先端MLLMの包括的評価を行った。
論文 参考訳(メタデータ) (2024-07-17T11:26:47Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
大規模言語モデル(LLM)は汎用AIエージェントとして広く利用されている。
本稿では,入力コンテキストの縮小バージョンを生成するために,言語モデルを微調整するフレームワークであるLearning to Reduceを提案する。
入力コンテキストから関連する証拠を選択する際に,本モデルが同等の精度を達成することを示す。
論文 参考訳(メタデータ) (2024-02-22T00:41:23Z) - Human-AI Collaborative Essay Scoring: A Dual-Process Framework with LLMs [13.262711792955377]
本研究では,Large Language Models (LLMs) のエッセイ自動評価における有効性について検討した。
本稿では,デュアルプロセス理論にインスパイアされたオープンソースのLLMベースのAESシステムを提案する。
本システムでは, 学習過程の自動化だけでなく, 成績や効率の向上も図っている。
論文 参考訳(メタデータ) (2024-01-12T07:50:10Z) - Teaching Language Models to Self-Improve through Interactive Demonstrations [83.9421355808174]
大規模言語モデルの自己改善能力は欠如しており、より小さなモデルで学ぶことは困難である。
このような自己改善能力を持つ小型モデルのトレーニングアルゴリズムであるTriPosTを導入する。
我々は,LLaMA-7bの算数および推論タスクの性能を最大7.13%向上させることができることを示す。
論文 参考訳(メタデータ) (2023-10-20T14:11:04Z) - Unlocking the Potential of User Feedback: Leveraging Large Language
Model as User Simulator to Enhance Dialogue System [65.93577256431125]
本稿では,ユーザガイド応答最適化 (UGRO) という代替手法を提案し,タスク指向の対話モデルと組み合わせる。
このアプローチでは、アノテーションのないユーザシミュレータとしてLLMを使用して対話応答を評価し、より小型のエンドツーエンドTODモデルと組み合わせる。
提案手法は従来のSOTA(State-of-the-art)よりも優れている。
論文 参考訳(メタデータ) (2023-06-16T13:04:56Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
大型言語モデル (LLM) は、一般的な要約データセットにおける元の参照要約よりも人間のアノテーションに好まれる。
より小さなテキスト要約モデルに対するLLM-as-reference学習設定について検討し,その性能が大幅に向上するかどうかを検討する。
論文 参考訳(メタデータ) (2023-05-23T16:56:04Z) - Opportunities and Challenges in Neural Dialog Tutoring [54.07241332881601]
言語学習のための2つの対話学習データセットを用いて、様々な生成言語モデルを厳密に分析する。
現在のアプローチでは、制約のある学習シナリオでチューリングをモデル化できますが、制約の少ないシナリオではパフォーマンスが悪くなります。
人的品質評価では, モデルと接地木アノテーションの両方が, 同等のチュータリングの点で低い性能を示した。
論文 参考訳(メタデータ) (2023-01-24T11:00:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。