論文の概要: Conformal Prediction for Multimodal Regression
- arxiv url: http://arxiv.org/abs/2410.19653v2
- Date: Mon, 28 Oct 2024 14:48:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:21:56.915039
- Title: Conformal Prediction for Multimodal Regression
- Title(参考訳): マルチモーダル回帰のコンフォーマル予測
- Authors: Alexis Bose, Jonathan Ethier, Paul Guinand,
- Abstract要約: コンフォメーション予測は 今や 方法論を通して マルチモーダルな文脈に拡張されています
本研究は,マルチモーダル情報を組み合わせた収束点から抽出した内部ニューラルネットワーク機能の可能性を明らかにする。
この機能は、マルチモーダルデータに富んだ領域にコンフォメーション予測を展開するための新しい経路を舗装する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper introduces multimodal conformal regression. Traditionally confined to scenarios with solely numerical input features, conformal prediction is now extended to multimodal contexts through our methodology, which harnesses internal features from complex neural network architectures processing images and unstructured text. Our findings highlight the potential for internal neural network features, extracted from convergence points where multimodal information is combined, to be used by conformal prediction to construct prediction intervals (PIs). This capability paves new paths for deploying conformal prediction in domains abundant with multimodal data, enabling a broader range of problems to benefit from guaranteed distribution-free uncertainty quantification.
- Abstract(参考訳): 本稿では,多モード共形回帰を導入する。
従来は数値入力のみのシナリオに限定されていたコンフォメーション予測は,画像や非構造化テキストを処理する複雑なニューラルネットワークアーキテクチャの内部的特徴を利用した手法により,マルチモーダルなコンテキストに拡張されてきた。
本研究は,マルチモーダル情報を組み合わせた収束点から抽出した内部ニューラルネットワーク機能の可能性に注目し,共形予測を用いて予測間隔(PI)を構築することを目的とした。
この能力は、マルチモーダルデータに富んだ領域にコンフォメーション予測を展開するための新しい経路を開拓し、分散のない不確実性定量化の保証による幅広い問題を可能にする。
関連論文リスト
- Multivariate Bayesian Last Layer for Regression: Uncertainty Quantification and Disentanglement [4.137574627759939]
異方性雑音下での多変量回帰の設定に新しいベイズラストレイヤーモデルを提案する。
パラメータ学習のための最適化アルゴリズムを提案する。
このフレームワークは、正統的な訓練を受けたディープニューラルネットワークを、不確実性を認識した新しいデータドメインに転送するために使用できることを示す。
論文 参考訳(メタデータ) (2024-05-02T21:53:32Z) - TTMFN: Two-stream Transformer-based Multimodal Fusion Network for
Survival Prediction [7.646155781863875]
生存予測のための2ストリームトランスフォーマーベースマルチモーダルフュージョンネットワーク(TTMFN)という新しいフレームワークを提案する。
TTMFNでは、異なるモード間の複雑な関係をフル活用するために、2ストリームマルチモーダルコアテンショントランスモジュールを提案する。
The Cancer Genome Atlasの4つのデータセットによる実験結果は、TMFNが最高のパフォーマンスまたは競争的な結果を得ることができることを示した。
論文 参考訳(メタデータ) (2023-11-13T02:31:20Z) - Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
変分推論において、ベイズモデルの利点は、真の後続分布を正確に捉えることに依存する。
複雑な多重モーダルおよび相関後部を近似するのに適した暗黙分布を特定するニューラルサンプリング手法を提案する。
提案手法では,ニューラルネットワークを局所的に線形化することにより,暗黙分布を用いた近似推論の新たなバウンダリを導入する。
論文 参考訳(メタデータ) (2023-10-10T14:06:56Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Probabilistic MIMO U-Net: Efficient and Accurate Uncertainty Estimation
for Pixel-wise Regression [1.4528189330418977]
機械学習における不確実性推定は、予測モデルの信頼性と解釈可能性を高めるための最重要課題である。
画素ワイド回帰タスクに対するMIMO(Multiple-Input Multiple-Output)フレームワークの適応について述べる。
論文 参考訳(メタデータ) (2023-08-14T22:08:28Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
このアルゴリズムは、異なるモードの適応的統合の原理における不確かさを効率的に推定し、信頼できる回帰結果を生成する。
実世界のデータと実世界のデータの両方に対する実験結果から,多モード回帰タスクにおける本手法の有効性と信頼性が示された。
論文 参考訳(メタデータ) (2021-11-11T14:28:12Z) - Interpretable Social Anchors for Human Trajectory Forecasting in Crowds [84.20437268671733]
本研究では,人混みの軌跡を予測できるニューラルネットワークシステムを提案する。
解釈可能なルールベースのインテントを学び、ニューラルネットワークの表現可能性を利用してシーン固有の残差をモデル化する。
私たちのアーキテクチャは、インタラクション中心のベンチマークTrajNet++でテストされています。
論文 参考訳(メタデータ) (2021-05-07T09:22:34Z) - Multivariate Deep Evidential Regression [77.34726150561087]
不確実性を認識するニューラルネットワークによる新しいアプローチは、従来の決定論的手法よりも有望である。
本稿では,レグレッションベースニューラルネットワークからアレータ性およびてんかん性不確かさを抽出する手法を提案する。
論文 参考訳(メタデータ) (2021-04-13T12:20:18Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
本稿では,画素レベルの予測を基本的側面,すなわち,技術の現状を推し進める新たなアプローチを提案する。
構造化されたマルチスケール機能学習と融合。
本論文では,マルチスケール表現を原理的に学習・融合するための新しいアテンテンションゲート条件ランダムフィールド(AG-CRFs)モデルに基づく確率的グラフアテンションネットワーク構造を提案する。
論文 参考訳(メタデータ) (2021-01-08T04:14:29Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
確率的負荷予測(PLF)は、スマートエネルギーグリッドの効率的な管理に必要な拡張ツールチェーンの重要なコンポーネントです。
ベイジアン混合密度ネットワークを枠とした新しいPLFアプローチを提案する。
後方分布の信頼性と計算にスケーラブルな推定を行うため,平均場変動推定と深層アンサンブルを統合した。
論文 参考訳(メタデータ) (2020-12-23T16:21:34Z) - Neural Mixture Distributional Regression [0.9023847175654603]
フレキシブルな加法予測器によって定義される分布回帰の有限混合を推定する包括的枠組みを提案する。
我々のフレームワークは、高次元の設定において、潜在的に異なる分布の多くの混合を処理できる。
論文 参考訳(メタデータ) (2020-10-14T09:00:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。