論文の概要: Optimizing Hearthstone Agents using an Evolutionary Algorithm
- arxiv url: http://arxiv.org/abs/2410.19681v1
- Date: Fri, 25 Oct 2024 16:49:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:37:29.736350
- Title: Optimizing Hearthstone Agents using an Evolutionary Algorithm
- Title(参考訳): 進化的アルゴリズムを用いたヘースストーンエージェントの最適化
- Authors: Pablo García-Sánchez, Alberto Tonda, Antonio J. Fernández-Leiva, Carlos Cotta,
- Abstract要約: 本稿では,カードゲーム『Harthstone』をプレイするエージェントの開発に進化的アルゴリズム(EA)を用いることを提案する。
エージェントは競争力のある共進化的トレーニングアプローチによって自己学習を特徴とする。
提案されたアプローチによって開発されたエージェントの1つは、国際ヘースストーン人工知能(AI)コンペティションにおけるランナーアップ(6%)であった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Digital collectible card games are not only a growing part of the video game industry, but also an interesting research area for the field of computational intelligence. This game genre allows researchers to deal with hidden information, uncertainty and planning, among other aspects. This paper proposes the use of evolutionary algorithms (EAs) to develop agents who play a card game, Hearthstone, by optimizing a data-driven decision-making mechanism that takes into account all the elements currently in play. Agents feature self-learning by means of a competitive coevolutionary training approach, whereby no external sparring element defined by the user is required for the optimization process. One of the agents developed through the proposed approach was runner-up (best 6%) in an international Hearthstone Artificial Intelligence (AI) competition. Our proposal performed remarkably well, even when it faced state-of-the-art techniques that attempted to take into account future game states, such as Monte-Carlo Tree search. This outcome shows how evolutionary computation could represent a considerable advantage in developing AIs for collectible card games such as Hearthstone.
- Abstract(参考訳): デジタル収集可能なカードゲームは、ビデオゲーム業界の成長する部分であるだけでなく、コンピュータ知能分野の興味深い研究領域でもある。
このゲームジャンルは、研究者が隠された情報、不確実性、計画などを扱うことを可能にする。
本稿では,現在プレイ中のすべての要素を考慮に入れたデータ駆動型意思決定機構を最適化することにより,カードゲームHerthstoneをプレイするエージェントの開発に進化的アルゴリズム(EA)を用いることを提案する。
エージェントは、競合する共進化的トレーニングアプローチによって自己学習を特徴としており、最適化プロセスには、ユーザが定義した外部スパーリング要素が不要である。
提案されたアプローチによって開発されたエージェントの1つは、国際ヘースストーン人工知能(AI)コンペティションにおけるランナーアップ(6%)であった。
我々の提案は,モンテカルロ木探索などの将来のゲーム状態を考慮した最先端技術に直面する場合でも,極めて良好に機能した。
この結果は、Hearthstoneのような収集可能なカードゲームのためのAIを開発する上で、進化的計算がいかに大きな利点を示すかを示している。
関連論文リスト
- Instruction-Driven Game Engine: A Poker Case Study [53.689520884467065]
IDGEプロジェクトは、大規模言語モデルで自由形式のゲーム記述を追従し、ゲームプレイプロセスを生成することにより、ゲーム開発を民主化することを目的としている。
我々は、複雑なシナリオへの露出を徐々に増大させるカリキュラム方式でIDGEを訓練する。
我々の最初の進歩はポーカーのIDGEの開発であり、これは幅広いポーカーの変種をサポートするだけでなく、自然言語入力を通じて高度に個別化された新しいポーカーゲームを可能にする。
論文 参考訳(メタデータ) (2024-10-17T11:16:27Z) - Mastering the Game of Guandan with Deep Reinforcement Learning and
Behavior Regulating [16.718186690675164]
我々は,グアンダンのゲームをマスターするAIエージェントのためのフレームワークGuanZeroを提案する。
本論文の主な貢献は、注意深く設計されたニューラルネットワーク符号化方式によるエージェントの動作の制御である。
論文 参考訳(メタデータ) (2024-02-21T07:26:06Z) - DanZero+: Dominating the GuanDan Game through Reinforcement Learning [95.90682269990705]
我々は、GuanDanという、非常に複雑で人気のあるカードゲームのためのAIプログラムを開発した。
私たちはまず、DanZeroという名のAIプログラムをこのゲームのために提案しました。
AIの能力をさらに強化するために、政策に基づく強化学習アルゴリズムをGuanDanに適用する。
論文 参考訳(メタデータ) (2023-12-05T08:07:32Z) - Games for Artificial Intelligence Research: A Review and Perspectives [4.44336371847479]
本稿では,人工知能研究のためのゲームとゲームベースのプラットフォームについてレビューする。
特定のタイプの人工知能と、適切な人工知能技術を用いて、ゲームにおける特定のニーズをテストし、マッチングするための適切なゲームとのマッチングに関するガイダンスを提供する。
論文 参考訳(メタデータ) (2023-04-26T03:42:31Z) - The Update-Equivalence Framework for Decision-Time Planning [78.44953498421854]
本稿では,サブゲームの解決ではなく,更新等価性に基づく意思決定時計画のための代替フレームワークを提案する。
ミラー降下に基づく完全協調型ゲームに対する有効音声探索アルゴリズムと、磁気ミラー降下に基づく対戦型ゲームに対する探索アルゴリズムを導出する。
論文 参考訳(メタデータ) (2023-04-25T20:28:55Z) - Generating Diverse and Competitive Play-Styles for Strategy Games [58.896302717975445]
ターン型戦略ゲーム(Tribes)のためのプログレッシブアンプランによるPortfolio Monte Carlo Tree Searchを提案する。
品質分散アルゴリズム(MAP-Elites)を使用して異なるプレイスタイルを実現し、競争レベルを維持しながらパラメータ化する方法を示します。
その結果,このアルゴリズムは,トレーニングに用いるレベルを超えて,幅広いゲームレベルにおいても,これらの目標を達成できることが示された。
論文 参考訳(メタデータ) (2021-04-17T20:33:24Z) - Deep Policy Networks for NPC Behaviors that Adapt to Changing Design
Parameters in Roguelike Games [137.86426963572214]
例えばRoguelikesのようなターンベースの戦略ゲームは、Deep Reinforcement Learning(DRL)にユニークな課題を提示する。
複雑なカテゴリ状態空間をより適切に処理し、設計決定によって強制的に再訓練する必要性を緩和する2つのネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-12-07T08:47:25Z) - Learning from Learners: Adapting Reinforcement Learning Agents to be
Competitive in a Card Game [71.24825724518847]
本稿では,競争力のあるマルチプレイヤーカードゲームの現実的な実装を学習・プレイするために,一般的な強化学習アルゴリズムをどのように適用できるかについて検討する。
本研究は,学習エージェントに対して,エージェントが競争力を持つことの学習方法を評価するための特定のトレーニングと検証ルーチンを提案し,それらが相互の演奏スタイルにどのように適応するかを説明する。
論文 参考訳(メタデータ) (2020-04-08T14:11:05Z) - From Chess and Atari to StarCraft and Beyond: How Game AI is Driving the
World of AI [10.80914659291096]
Game AIは、最も先進的なAIアルゴリズムを開発し、テストするための研究分野として、自らを確立した。
Game AIの進歩は、ロボティクスや化学物質の合成など、ゲーム以外の領域にも拡張され始めている。
論文 参考訳(メタデータ) (2020-02-24T18:28:54Z) - Scalable Psychological Momentum Forecasting in Esports [0.0]
競争ゲームのための知的エージェント推薦エンジンの開発が進行中である。
本研究では,選手の心理的運動量と傾きの学習的表現を用いて,前・後勝利予測における最先端のパフォーマンスを達成可能であることを示す。
論文 参考訳(メタデータ) (2020-01-30T11:57:40Z) - Evolutionary Approach to Collectible Card Game Arena Deckbuilding using
Active Genes [1.027974860479791]
アリーナゲームモードでは、各試合に先立って、プレイヤーは以前知らなかった選択肢から1枚ずつデッキ選択カードを組み立てなければならない。
そこで本研究では,遺伝子型の世代別サブシーケンスのみに対する演算子の範囲を減らすために,活性遺伝子の概念を用いた進化的アルゴリズムの変種を提案する。
論文 参考訳(メタデータ) (2020-01-05T22:46:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。