論文の概要: Games for Artificial Intelligence Research: A Review and Perspectives
- arxiv url: http://arxiv.org/abs/2304.13269v4
- Date: Tue, 4 Jun 2024 05:18:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 14:36:23.609332
- Title: Games for Artificial Intelligence Research: A Review and Perspectives
- Title(参考訳): 人工知能研究のためのゲーム : レビューと展望
- Authors: Chengpeng Hu, Yunlong Zhao, Ziqi Wang, Haocheng Du, Jialin Liu,
- Abstract要約: 本稿では,人工知能研究のためのゲームとゲームベースのプラットフォームについてレビューする。
特定のタイプの人工知能と、適切な人工知能技術を用いて、ゲームにおける特定のニーズをテストし、マッチングするための適切なゲームとのマッチングに関するガイダンスを提供する。
- 参考スコア(独自算出の注目度): 4.44336371847479
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Games have been the perfect test-beds for artificial intelligence research for the characteristics that widely exist in real-world scenarios. Learning and optimisation, decision making in dynamic and uncertain environments, game theory, planning and scheduling, design and education are common research areas shared between games and real-world problems. Numerous open-source games or game-based environments have been implemented for studying artificial intelligence. In addition to single- or multi-player, collaborative or adversarial games, there has also been growing interest in implementing platforms for creative design in recent years. Those platforms provide ideal benchmarks for exploring and comparing artificial intelligence ideas and techniques. This paper reviews the games and game-based platforms for artificial intelligence research, provides guidance on matching particular types of artificial intelligence with suitable games for testing and matching particular needs in games with suitable artificial intelligence techniques, discusses the research trend induced by the evolution of those games and platforms, and gives an outlook.
- Abstract(参考訳): ゲームは、現実世界のシナリオに広く存在する特徴に対して、人工知能研究のための完璧なテストベッドでした。
学習と最適化、動的で不確実な環境における意思決定、ゲーム理論、計画とスケジューリング、設計と教育は、ゲームと現実世界の問題の間で共有される共通の研究分野である。
多くのオープンソースゲームやゲームベースの環境が人工知能の研究のために実装されている。
シングルまたはマルチプレイヤー、コラボレーティブまたは対戦型ゲームに加えて、近年はクリエイティブデザインのためのプラットフォームの実装にも関心が高まっている。
これらのプラットフォームは、人工知能のアイデアとテクニックを探索し比較するための理想的なベンチマークを提供する。
本稿では、人工知能研究のためのゲームとゲームベースのプラットフォームをレビューし、特定のタイプの人工知能と、適切な人工知能技術を用いて、ゲームにおける特定のニーズをテストし、マッチングするための適切なゲームとのマッチングに関するガイダンスを提供し、それらのゲームとプラットフォームの進化によって引き起こされる研究動向を考察し、展望を与える。
関連論文リスト
- Serious Games in Digital Gaming: A Comprehensive Review of Applications,
Game Engines and Advancements [55.2480439325792]
近年,ユーザを同時に教育し,楽しませる能力によって,真剣なゲームの人気が高まっている。
本稿では,様々なタイプのデジタルゲームの概要を概観し,真剣なゲームジャンルに展開する。
ゲーム開発業界で最も広く使われているゲームエンジンを提示し、Unityのゲームマシンの利点を拡張する。
論文 参考訳(メタデータ) (2023-11-03T09:17:09Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - Student of Games: A unified learning algorithm for both perfect and
imperfect information games [22.97853623156316]
Students of Gamesは、ガイド付き検索、自己学習、ゲーム理論推論を組み合わせたアルゴリズムである。
学生ゲームは,計算能力と近似能力が増大するにつれて,完全プレイに収束し,健全であることを示す。
学生はチェスと囲碁で強い成績を収め、無期限のテキサスホールディングスのポーカーで最強の公開エージェントを破り、スコットランドヤードで最先端のエージェントを倒した。
論文 参考訳(メタデータ) (2021-12-06T17:16:24Z) - On games and simulators as a platform for development of artificial
intelligence for command and control [46.33784995107226]
ゲームやシミュレータは、複雑なマルチエージェント、マルチプレイヤー、不完全な情報シナリオを実行する上で価値のあるプラットフォームである。
StarCraft IIのようなリアルタイム戦略ゲームにおける人工知能アルゴリズムの成功もまた、軍事研究コミュニティの注目を集めている。
論文 参考訳(メタデータ) (2021-10-21T17:39:58Z) - Adversarial Random Forest Classifier for Automated Game Design [1.590611306750623]
本稿では,自律型ゲームデザインのための人間ライクなフィットネス関数を,対角的に学習しようとする実験について述べる。
我々の実験は我々の期待に届かなかったが、今後の自律型ゲームデザイン研究に影響を及ぼすことを期待するシステムと結果について分析した。
論文 参考訳(メタデータ) (2021-07-26T22:30:38Z) - Modular Object-Oriented Games: A Task Framework for Reinforcement
Learning, Psychology, and Neuroscience [0.8594140167290096]
近年、シミュレーションゲームの研究のトレンドは、人工知能、認知科学、心理学、神経科学の分野において勢いを増している。
ここでは,モジュール型オブジェクト指向ゲームを紹介する。軽量でフレキシブル,カスタマイズ可能で,機械学習,心理学,神経生理学の研究者が使用するように設計されたpythonタスクフレームワークである。
論文 参考訳(メタデータ) (2021-02-25T01:17:03Z) - Teach me to play, gamer! Imitative learning in computer games via
linguistic description of complex phenomena and decision tree [55.41644538483948]
本稿では,複雑な現象の言語記述に基づく模倣による新しい機械学習モデルを提案する。
この手法は,ゲーム開発における知的エージェントの動作を設計し,実装するための優れた代替手段となる。
論文 参考訳(メタデータ) (2021-01-06T21:14:10Z) - Game Plan: What AI can do for Football, and What Football can do for AI [83.79507996785838]
予測的および規範的フットボール分析は、統計学習、ゲーム理論、コンピュータビジョンの交差点における新たな発展と進歩を必要とする。
フットボール分析は、サッカー自体のゲームを変えるだけでなく、この領域がAIの分野で何を意味するのかという観点からも、非常に価値の高いゲームチェンジャーであることを示す。
論文 参考訳(メタデータ) (2020-11-18T10:26:02Z) - Navigating the Landscape of Multiplayer Games [20.483315340460127]
大規模ゲームの応答グラフにネットワーク測度を適用することで,ゲームのランドスケープを創出できることを示す。
本研究は, 標準ゲームから複雑な経験ゲームまで, 訓練されたエージェント同士のパフォーマンスを計測する領域における知見について述べる。
論文 参考訳(メタデータ) (2020-05-04T16:58:17Z) - Exploration Based Language Learning for Text-Based Games [72.30525050367216]
本研究は,テキストベースのコンピュータゲームにおいて,最先端の性能を発揮できる探索・模倣学習型エージェントを提案する。
テキストベースのコンピュータゲームは、自然言語でプレイヤーの世界を記述し、プレイヤーがテキストを使ってゲームと対話することを期待する。
これらのゲームは、言語理解、問題解決、および人工エージェントによる言語生成のためのテストベッドと見なすことができるため、興味がある。
論文 参考訳(メタデータ) (2020-01-24T03:03:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。