論文の概要: Adaptive Real-Time Multi-Loss Function Optimization Using Dynamic Memory Fusion Framework: A Case Study on Breast Cancer Segmentation
- arxiv url: http://arxiv.org/abs/2410.19745v1
- Date: Thu, 10 Oct 2024 11:23:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-03 08:52:28.996475
- Title: Adaptive Real-Time Multi-Loss Function Optimization Using Dynamic Memory Fusion Framework: A Case Study on Breast Cancer Segmentation
- Title(参考訳): 動的メモリ融合フレームワークを用いた適応的リアルタイムマルチロス関数最適化:乳癌切除例の検討
- Authors: Amin Golnari, Mostafa Diba,
- Abstract要約: 適応型マルチロス関数をリアルタイムにペナル化するための動的メモリ融合という新しいフレームワークを提案する。
乳房超音波データセットを用いた実験により,様々な測定値のセグメンテーション性能が向上した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Deep learning has proven to be a highly effective tool for a wide range of applications, significantly when leveraging the power of multi-loss functions to optimize performance on multiple criteria simultaneously. However, optimal selection and weighting loss functions in deep learning tasks can significantly influence model performance, yet manual tuning of these functions is often inefficient and inflexible. We propose a novel framework called dynamic memory fusion for adaptive multi-loss function penalizing in real-time to address this. This framework leverages historical loss values data to dynamically adjust the weighting of multiple loss functions throughout the training process. Additionally, this framework integrates an auxiliary loss function to enhance model performance in the early stages. To further research horizons, we introduce the class-balanced dice loss function, designed to address class imbalance by prioritizing underrepresented classes. Experiments on breast ultrasound datasets demonstrate that the framework improves segmentation performance across various metrics. These results demonstrate the effectiveness of our proposed framework in ensuring that the model dynamically adjusts its focus to prioritize the most relevant criteria, leading to improved performance in evolving environments. The source code for our proposed methodology is publicly available on GitHub.
- Abstract(参考訳): ディープラーニングは、マルチロス関数のパワーを活用して、複数の基準におけるパフォーマンスを同時に最適化する場合、幅広いアプリケーションにとって非常に効果的なツールであることが証明されている。
しかし、ディープラーニングタスクにおける最適選択と重み付け損失関数は、モデル性能に大きな影響を及ぼすが、これらの関数の手動チューニングは、しばしば非効率で非柔軟である。
本稿では,動的メモリ融合(Dynamic memory fusion)と呼ばれる新しいフレームワークを提案する。
このフレームワークは、履歴損失値データを利用して、トレーニングプロセス全体を通して複数の損失関数の重み付けを動的に調整する。
さらに、このフレームワークは、早期のモデル性能を高めるために補助損失関数を統合する。
そこで本研究では,クラス不均衡に対処するクラスバランス型ダイス損失関数を提案する。
乳房超音波データセットを用いた実験により,様々な測定値のセグメンテーション性能が向上した。
これらの結果は、モデルが最も関係のある基準を優先順位付けするように動的に焦点を調整し、進化する環境における性能改善につながることを保証する上で、提案フレームワークの有効性を示すものである。
提案した方法論のソースコードはGitHubで公開されている。
関連論文リスト
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
正規化勾配差(NGDiff)アルゴリズムを導入し、目的間のトレードオフをよりよく制御できるようにする。
本研究では,TOFUおよびMUSEデータセットにおける最先端の未学習手法において,NGDiffの優れた性能を実証的に実証し,理論的解析を行った。
論文 参考訳(メタデータ) (2024-10-29T14:41:44Z) - Gradient Descent Efficiency Index [0.0]
本研究では,各イテレーションの有効性を定量化するために,新しい効率指標Ekを導入する。
提案した測定基準は、誤差の相対的変化と繰り返し間の損失関数の安定性の両方を考慮に入れている。
Ekは、機械学習アプリケーションにおける最適化アルゴリズムの選択とチューニングにおいて、より詳細な決定を導く可能性がある。
論文 参考訳(メタデータ) (2024-10-25T10:22:22Z) - Memory-Enhanced Neural Solvers for Efficient Adaptation in Combinatorial Optimization [6.713974813995327]
本稿では、メモリを活用してニューラルネットワークの適応性を向上させるアプローチであるMementOを提案する。
我々は,大規模インスタンス上で全RL自動回帰解法をトレーニングし,MementOが拡張可能で,データ効率がよいことを示す。
全体として、MementOは評価された12のタスクのうち11に最先端のタスクをプッシュすることができる。
論文 参考訳(メタデータ) (2024-06-24T08:18:19Z) - Fast and Efficient Local Search for Genetic Programming Based Loss
Function Learning [12.581217671500887]
本稿では,タスクとモデルに依存しない損失関数学習のためのメタラーニングフレームワークを提案する。
その結果, 学習した損失関数は, 収束性, サンプル効率, グラフ化, コンピュータビジョン, 自然言語処理問題に対する推論性能の向上をもたらすことがわかった。
論文 参考訳(メタデータ) (2024-03-01T02:20:04Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - FAStEN: An Efficient Adaptive Method for Feature Selection and Estimation in High-Dimensional Functional Regressions [7.674715791336311]
本稿では,スパース関数オン・ファンクション回帰問題において特徴選択を行うための,新しい,柔軟な,超効率的なアプローチを提案する。
我々はそれをスカラー・オン・ファンクション・フレームワークに拡張する方法を示す。
AOMIC PIOP1による脳MRIデータへの応用について述べる。
論文 参考訳(メタデータ) (2023-03-26T19:41:17Z) - Offline Reinforcement Learning with Differentiable Function
Approximation is Provably Efficient [65.08966446962845]
歴史的データを用いて意思決定戦略を最適化することを目的としたオフライン強化学習は、現実の応用に広く適用されている。
微分関数クラス近似(DFA)を用いたオフライン強化学習の検討から一歩踏み出した。
最も重要なことは、悲観的な適合Q-ラーニングアルゴリズムを解析することにより、オフライン微分関数近似が有効であることを示すことである。
論文 参考訳(メタデータ) (2022-10-03T07:59:42Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - AutoLoss: Automated Loss Function Search in Recommendations [34.27873944762912]
候補集合から適切な損失関数を自動かつ適応的に検索できるAutoLossフレームワークを提案する。
既存のアルゴリズムとは異なり、提案したコントローラは、様々な収束挙動に応じて、異なるデータ例に対する損失確率を適応的に生成することができる。
論文 参考訳(メタデータ) (2021-06-12T08:15:00Z) - Progressive Self-Guided Loss for Salient Object Detection [102.35488902433896]
画像中の深層学習に基づくサラエント物体検出を容易にするプログレッシブ自己誘導損失関数を提案する。
我々のフレームワークは適応的に集約されたマルチスケール機能を利用して、健全な物体の探索と検出を効果的に行う。
論文 参考訳(メタデータ) (2021-01-07T07:33:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。