ControlAgent: Automating Control System Design via Novel Integration of LLM Agents and Domain Expertise
- URL: http://arxiv.org/abs/2410.19811v1
- Date: Thu, 17 Oct 2024 17:42:48 GMT
- Title: ControlAgent: Automating Control System Design via Novel Integration of LLM Agents and Domain Expertise
- Authors: Xingang Guo, Darioush Keivan, Usman Syed, Lianhui Qin, Huan Zhang, Geir Dullerud, Peter Seiler, Bin Hu,
- Abstract summary: Control system design is a crucial aspect of modern engineering with far-reaching applications across diverse sectors.
Despite advances made by Large Language Models (LLMs) in various domains, their application in control system design remains limited due to the complexity and specificity of control theory.
We introduce ControlAgent, a new paradigm that automates control system design via novel integration of LLM agents and control-oriented domain expertise.
- Score: 14.14268499543524
- License:
- Abstract: Control system design is a crucial aspect of modern engineering with far-reaching applications across diverse sectors including aerospace, automotive systems, power grids, and robotics. Despite advances made by Large Language Models (LLMs) in various domains, their application in control system design remains limited due to the complexity and specificity of control theory. To bridge this gap, we introduce ControlAgent, a new paradigm that automates control system design via novel integration of LLM agents and control-oriented domain expertise. ControlAgent encodes expert control knowledge and emulates human iterative design processes by gradually tuning controller parameters to meet user-specified requirements for stability, performance, and robustness. ControlAgent integrates multiple collaborative LLM agents, including a central agent responsible for task distribution and task-specific agents dedicated to detailed controller design for various types of systems and requirements. ControlAgent also employs a Python computation agent that performs complex calculations and controller evaluations based on standard design information provided by task-specified LLM agents. Combined with a history and feedback module, the task-specific LLM agents iteratively refine controller parameters based on real-time feedback from prior designs. Overall, ControlAgent mimics the design processes used by (human) practicing engineers, but removes all the human efforts and can be run in a fully automated way to give end-to-end solutions for control system design with user-specified requirements. To validate ControlAgent's effectiveness, we develop ControlEval, an evaluation dataset that comprises 500 control tasks with various specific design goals. The effectiveness of ControlAgent is demonstrated via extensive comparative evaluations between LLM-based and traditional human-involved toolbox-based baselines.
Related papers
- Communication-Control Codesign for Large-Scale Wireless Networked Control Systems [80.30532872347668]
Wireless Networked Control Systems (WNCSs) are essential to Industry 4.0, enabling flexible control in applications, such as drone swarms and autonomous robots.
We propose a practical WNCS model that captures correlated dynamics among multiple control loops with spatially distributed sensors and actuators sharing limited wireless resources over multi-state Markov block-fading channels.
We develop a Deep Reinforcement Learning (DRL) algorithm that efficiently handles the hybrid action space, captures communication-control correlations, and ensures robust training despite sparse cross-domain variables and floating control inputs.
arXiv Detail & Related papers (2024-10-15T06:28:21Z) - Agent S: An Open Agentic Framework that Uses Computers Like a Human [31.16046798529319]
We present Agent S, an open agentic framework that enables autonomous interaction with computers through a Graphical User Interface (GUI)
Agent S aims to address three key challenges in automating computer tasks: acquiring domain-specific knowledge, planning over long task horizons, and handling dynamic, non-uniform interfaces.
arXiv Detail & Related papers (2024-10-10T17:43:51Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline.
Recent works have started exploiting large language models (LLM) to lessen such burden.
This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML.
arXiv Detail & Related papers (2024-10-03T20:01:09Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgent is a generic method to automatically extend expert agents to multi-agent systems via the evolutionary algorithm.
We show that EvoAgent can automatically generate multiple expert agents and significantly enhance the task-solving capabilities of LLM-based agents.
arXiv Detail & Related papers (2024-06-20T11:49:23Z) - Meta-Control: Automatic Model-based Control Synthesis for Heterogeneous Robot Skills [10.43221469116584]
We propose Meta-Control, which creates customized state representations and control strategies tailored to specific tasks.
Our core insight is that a meta-control system can be built to automate the thought process that human experts use to design control systems.
arXiv Detail & Related papers (2024-05-18T19:58:44Z) - SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering [79.07755560048388]
SWE-agent is a system that facilitates LM agents to autonomously use computers to solve software engineering tasks.
SWE-agent's custom agent-computer interface (ACI) significantly enhances an agent's ability to create and edit code files, navigate entire repositories, and execute tests and other programs.
We evaluate SWE-agent on SWE-bench and HumanEvalFix, achieving state-of-the-art performance on both with a pass@1 rate of 12.5% and 87.7%, respectively.
arXiv Detail & Related papers (2024-05-06T17:41:33Z) - Decision Transformer as a Foundation Model for Partially Observable Continuous Control [5.453548045211778]
Decision Transformer (DT) architecture is used to predict optimal action based on past observations, actions, and rewards.
DT exhibits remarkable zero-shot generalization abilities for completely new tasks.
These findings highlight the potential of DT as a foundational controller for general control applications.
arXiv Detail & Related papers (2024-04-03T02:17:34Z) - ReACT: Reinforcement Learning for Controller Parametrization using
B-Spline Geometries [0.0]
This work presents a novel approach using deep reinforcement learning (DRL) with N-dimensional B-spline geometries (BSGs)
We focus on the control of parameter-variant systems, a class of systems with complex behavior which depends on the operating conditions.
We make the adaptation process more efficient by introducing BSGs to map the controller parameters which may depend on numerous operating conditions.
arXiv Detail & Related papers (2024-01-10T16:27:30Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency.
We propose an alternative formulation that leverages Multi-Agent RL (MARL) to tackle this problem.
Our evaluation shows that the MARL formulation consistently outperforms single-agent RL baselines.
arXiv Detail & Related papers (2022-11-29T17:10:24Z) - Policy Search for Model Predictive Control with Application to Agile
Drone Flight [56.24908013905407]
We propose a policy-search-for-model-predictive-control framework for MPC.
Specifically, we formulate the MPC as a parameterized controller, where the hard-to-optimize decision variables are represented as high-level policies.
Experiments show that our controller achieves robust and real-time control performance in both simulation and the real world.
arXiv Detail & Related papers (2021-12-07T17:39:24Z) - Towards Automatic Actor-Critic Solutions to Continuous Control [7.312692481631664]
This paper creates an evolutionary approach that tunes actor-critic algorithms to new domains.
Our design is sample efficient and provides practical advantages over baseline approaches.
We then apply it to new control tasks to find high-performance solutions with minimal compute and research effort.
arXiv Detail & Related papers (2021-06-16T16:18:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.