論文の概要: Cooperative Strategic Planning Enhances Reasoning Capabilities in Large Language Models
- arxiv url: http://arxiv.org/abs/2410.20007v1
- Date: Fri, 25 Oct 2024 23:32:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:18:24.809183
- Title: Cooperative Strategic Planning Enhances Reasoning Capabilities in Large Language Models
- Title(参考訳): 大規模言語モデルにおける協調戦略プランニングによる推論能力の向上
- Authors: Danqing Wang, Zhuorui Ye, Fei Fang, Lei Li,
- Abstract要約: 本稿では,新しい協調型マルチエージェント推論フレームワーク(CoPlanner)を提案する。
コプラナーは2つのLSMエージェント(計画エージェントと推論エージェント)から構成される。
以上の結果から,計画エージェントからの指導とエージェント間の効果的な協力が,CoPlannerの優れた性能に寄与することが示唆された。
- 参考スコア(独自算出の注目度): 37.899581994741865
- License:
- Abstract: Enhancing the reasoning capabilities of large language models (LLMs) is crucial for enabling them to tackle complex, multi-step problems. Multi-agent frameworks have shown great potential in enhancing LLMs' reasoning capabilities. However, the lack of effective cooperation between LLM agents hinders their performance, especially for multi-step reasoning tasks. This paper proposes a novel cooperative multi-agent reasoning framework (CoPlanner) by separating reasoning steps and assigning distinct duties to different agents. CoPlanner consists of two LLM agents: a planning agent and a reasoning agent. The planning agent provides high-level strategic hints, while the reasoning agent follows these hints and infers answers. By training the planning agent's policy through the interactive reasoning process via Proximal Policy Optimization (PPO), the LLaMA-3-8B-based CoPlanner outperforms the previous best method by 9.94\% on LogiQA and 3.09\% on BBH. Our results demonstrate that the guidance from the planning agent and the effective cooperation between the agents contribute to the superior performance of CoPlanner in tackling multi-step reasoning problems.
- Abstract(参考訳): 大規模言語モデル(LLM)の推論能力を強化することは、複雑で多段階的な問題に対処するために重要である。
マルチエージェントフレームワークはLLMの推論能力を高める大きな可能性を示している。
しかし、LLMエージェント間の効果的な協調が欠如していることは、特に多段階推論タスクにおいて、その性能を妨げている。
本稿では, 推論ステップを分離し, 異なるエージェントに異なる責務を割り当てることにより, 協調型マルチエージェント推論フレームワーク(CoPlanner)を提案する。
コプラナーは2つのLSMエージェント(計画エージェントと推論エージェント)から構成される。
計画エージェントは高いレベルの戦略的ヒントを提供し、推論エージェントはこれらのヒントに従い、回答を推測する。
LLaMA-3-8BベースのCoPlannerは、PPO(Proximal Policy Optimization)による対話的推論プロセスを通じて計画エージェントのポリシーをトレーニングすることにより、LogiQAでは9.94 %、BBHでは3.09 %、以前のベストメソッドでは9.94 %を上回ります。
この結果から,多段階推論問題に対処する上で,計画エージェントからの指導とエージェント間の効果的な協調がCoPlannerの優れた性能に寄与することが示唆された。
関連論文リスト
- CaPo: Cooperative Plan Optimization for Efficient Embodied Multi-Agent Cooperation [98.11670473661587]
CaPoは,1)メタプラン生成,2)プログレッシブなメタプランと実行の2つのフェーズで協調効率を向上する。
3Dworld Multi-Agent TransportとCommunicative Watch-And-Helpタスクの実験結果は、CaPoが最先端技術と比較してタスク完了率と効率をはるかに高めることを示した。
論文 参考訳(メタデータ) (2024-11-07T13:08:04Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
本稿では,高速なタスク分解とアロケーションプロセスを活用するマルチエージェントシステムにおけるエージェント指向計画のための新しいフレームワークを提案する。
提案フレームワークにフィードバックループを組み込んで,そのような問題解決プロセスの有効性と堅牢性をさらに向上させる。
論文 参考訳(メタデータ) (2024-10-03T04:07:51Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
我々は、llmベースの自律エージェントフレームワークであるAgentCOTを紹介する。
それぞれのステップで、AgentCOTはアクションを選択し、それを実行して、証拠を裏付ける中間結果を得る。
エージェントCOTの性能を高めるための2つの新しい戦略を導入する。
論文 参考訳(メタデータ) (2024-09-19T02:20:06Z) - Cooperative Reward Shaping for Multi-Agent Pathfinding [4.244426154524592]
MAPF(Multi-Agent Pathfinding)の主な目的は、全てのエージェントに対して効率的で競合のないパスを計画することである。
従来のマルチエージェントパス計画アルゴリズムは、複数のエージェントに対して効率的な分散パス計画を実現するのに苦労する。
独立Q-Learning(IQL)に基づく独自の報酬形成手法を紹介する。
論文 参考訳(メタデータ) (2024-07-15T02:44:41Z) - Adaptive In-conversation Team Building for Language Model Agents [33.03550687362213]
複数の大規模言語モデル(LLM)エージェントを活用することは、複雑なタスクに取り組む上で有望なアプローチであることが示されている。
私たちの新しい適応型チーム構築パラダイムは、Captain Agentという新しいエージェント設計を通じて実現された柔軟なソリューションを提供します。
6つの実世界のシナリオに対する包括的な評価は、Captain Agentが既存のマルチエージェントメソッドを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2024-05-29T18:08:37Z) - A Human-Like Reasoning Framework for Multi-Phases Planning Task with Large Language Models [15.874604623294427]
マルチパス計画問題には、アウトライン、情報収集、計画といった複数の相互接続ステージが含まれる。
既存の推論アプローチは、この複雑なタスクを効果的に解決するのに苦労しています。
本研究は,LLMエージェントのためのヒューマンライクな計画フレームワークを開発することで,この問題に対処することを目的としている。
論文 参考訳(メタデータ) (2024-05-28T14:13:32Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - KnowAgent: Knowledge-Augmented Planning for LLM-Based Agents [54.09074527006576]
大規模言語モデル(LLM)は複雑な推論タスクにおいて大きな可能性を証明していますが、より高度な課題に取り組むには不十分です。
この不適切さは、主に言語エージェントのアクション知識が組み込まれていないことに起因する。
我々は、明示的な行動知識を取り入れることで、LLMの計画能力を高めるために設計された新しいアプローチであるKnowAgentを紹介する。
論文 参考訳(メタデータ) (2024-03-05T16:39:12Z) - Theory of Mind for Multi-Agent Collaboration via Large Language Models [5.2767999863286645]
本研究では,多エージェント協調型テキストゲームにおけるLarge Language Models (LLMs) ベースのエージェントを,理論オブマインド (ToM) 推論タスクを用いて評価する。
LLMをベースとしたエージェント間の創発的協調行動と高次マインド理論の実証を行った。
論文 参考訳(メタデータ) (2023-10-16T07:51:19Z) - Improving Planning with Large Language Models: A Modular Agentic Architecture [7.63815864256878]
大規模言語モデル(LLM)は、多段階の推論や目標指向の計画を必要とするタスクに悩まされることが多い。
本稿では,特殊モジュールの反復的相互作用によって計画が達成されるエージェントアーキテクチャ,MAPを提案する。
MAPは両方の標準LLM法よりも大幅に改善されていることがわかった。
論文 参考訳(メタデータ) (2023-09-30T00:10:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。