論文の概要: VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction
- arxiv url: http://arxiv.org/abs/2402.17427v1
- Date: Tue, 27 Feb 2024 11:40:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-28 16:33:25.258712
- Title: VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction
- Title(参考訳): VastGaussian: 大きなシーン再構築のための3Dガウシアン
- Authors: Jiaqi Lin, Zhihao Li, Xiao Tang, Jianzhuang Liu, Shiyong Liu, Jiayue
Liu, Yangdi Lu, Xiaofei Wu, Songcen Xu, Youliang Yan, Wenming Yang
- Abstract要約: VastGaussianは3次元ガウススティングに基づく大規模シーンにおける高品質な再構成とリアルタイムレンダリングのための最初の方法である。
提案手法は既存のNeRF手法より優れており,複数の大規模シーンデータセットの最先端結果が得られる。
- 参考スコア(独自算出の注目度): 59.40711222096875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing NeRF-based methods for large scene reconstruction often have
limitations in visual quality and rendering speed. While the recent 3D Gaussian
Splatting works well on small-scale and object-centric scenes, scaling it up to
large scenes poses challenges due to limited video memory, long optimization
time, and noticeable appearance variations. To address these challenges, we
present VastGaussian, the first method for high-quality reconstruction and
real-time rendering on large scenes based on 3D Gaussian Splatting. We propose
a progressive partitioning strategy to divide a large scene into multiple
cells, where the training cameras and point cloud are properly distributed with
an airspace-aware visibility criterion. These cells are merged into a complete
scene after parallel optimization. We also introduce decoupled appearance
modeling into the optimization process to reduce appearance variations in the
rendered images. Our approach outperforms existing NeRF-based methods and
achieves state-of-the-art results on multiple large scene datasets, enabling
fast optimization and high-fidelity real-time rendering.
- Abstract(参考訳): 既存のNeRFベースの大規模なシーン再構成手法は、視覚的品質とレンダリング速度に制限があることが多い。
最近の3D Gaussian Splattingは、小規模でオブジェクト中心のシーンでうまく機能するが、大きなシーンにスケールアップすることは、ビデオメモリの制限、長い最適化時間、目立った外観の変化による課題を引き起こす。
これらの課題に対処するため,我々は3次元ガウス型スプラッティングによる高品質な再現とリアルタイムレンダリングのための最初の手法である vastgaussian を提案する。
本研究では,大規模シーンを複数のセルに分割し,訓練用カメラとポイントクラウドを空域対応の可視性基準で適切に配置するプログレッシブパーティショニング戦略を提案する。
これらのセルは並列最適化後に完全なシーンにマージされる。
また,レンダリング画像の外観変化を低減させるため,デカップリングされた外観モデリングを最適化プロセスに導入する。
提案手法は,既存のNeRF手法より優れ,複数の大規模シーンデータセットの最先端結果を実現し,高速な最適化と高速リアルタイムレンダリングを実現する。
関連論文リスト
- SCube: Instant Large-Scale Scene Reconstruction using VoxSplats [55.383993296042526]
SCubeは画像の粗い集合から大規模3次元シーン(幾何学、外観、意味論)を再構成する新しい手法である。
提案手法は,高解像度のスパース・ボクセル・足場上に支持された3次元ガウスの組である,新しい表現VoxSplatを用いて再構成シーンを符号化する。
論文 参考訳(メタデータ) (2024-10-26T00:52:46Z) - GaRField++: Reinforced Gaussian Radiance Fields for Large-Scale 3D Scene Reconstruction [1.7624442706463355]
本稿では,3次元ガウススプラッティングに基づく大規模シーン再構築のための新しい枠組みを提案する(3DGS)。
スケーラビリティ問題に対処するため,大規模シーンを複数のセルに分割し,各セルの候補ポイントクラウドとカメラビューとを相関させる。
本研究では,大規模シーン再構成の最先端手法よりも連続的に高忠実度レンダリング結果を生成することを示す。
論文 参考訳(メタデータ) (2024-09-19T13:43:31Z) - SplatFields: Neural Gaussian Splats for Sparse 3D and 4D Reconstruction [24.33543853742041]
3Dガウススティング(3DGS)は実用的でスケーラブルな再構築手法として登場した。
暗黙的ニューラルネットワークの出力としてモデル化することで,スプレート特徴を効果的に正規化する最適化手法を提案する。
当社のアプローチは,異なるセットアップやシーンの複雑さをまたいだ広範なテストによって実証されるような,静的および動的ケースを効果的に処理する。
論文 参考訳(メタデータ) (2024-09-17T14:04:20Z) - Compact 3D Gaussian Splatting for Static and Dynamic Radiance Fields [13.729716867839509]
ハイパフォーマンスを維持しつつガウスの数を著しく削減する学習可能なマスク戦略を提案する。
さらに、格子型ニューラルネットワークを用いて、ビュー依存色をコンパクトかつ効果的に表現することを提案する。
我々の研究は、3Dシーン表現のための包括的なフレームワークを提供し、ハイパフォーマンス、高速トレーニング、コンパクト性、リアルタイムレンダリングを実現しています。
論文 参考訳(メタデータ) (2024-08-07T14:56:34Z) - Dynamic 3D Gaussian Fields for Urban Areas [60.64840836584623]
大規模でダイナミックな都市部における新規ビュー合成(NVS)のための効率的なニューラル3Dシーン表現法を提案する。
本研究では,大規模都市にスケールするニューラルネットワークシーン表現である4DGFを提案する。
論文 参考訳(メタデータ) (2024-06-05T12:07:39Z) - MVSGaussian: Fast Generalizable Gaussian Splatting Reconstruction from Multi-View Stereo [54.00987996368157]
MVSGaussianは、Multi-View Stereo(MVS)から導かれる新しい一般化可能な3次元ガウス表現手法である。
MVSGaussianは、シーンごとにより良い合成品質でリアルタイムレンダリングを実現する。
論文 参考訳(メタデータ) (2024-05-20T17:59:30Z) - DN-Splatter: Depth and Normal Priors for Gaussian Splatting and Meshing [19.437747560051566]
カラー画像の勾配に基づく適応的な深度損失を提案し、様々なベースライン上での深度推定と新しいビュー合成結果を改善した。
我々の単純かつ効果的な正則化技術はガウス表現からの直接メッシュ抽出を可能にし、屋内シーンのより物理的に正確な再構築を可能にする。
論文 参考訳(メタデータ) (2024-03-26T16:00:31Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
最近の3次元ガウス散乱法は、最先端のレンダリング品質と速度を達成している。
局所的な3Dガウス分布にアンカーポイントを用いるScaffold-GSを導入する。
提案手法は,高品質なレンダリングを実現しつつ,冗長なガウスを効果的に削減できることを示す。
論文 参考訳(メタデータ) (2023-11-30T17:58:57Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。