論文の概要: Understanding the Effect of GCN Convolutions in Regression Tasks
- arxiv url: http://arxiv.org/abs/2410.20068v2
- Date: Wed, 16 Apr 2025 07:55:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 21:28:26.032069
- Title: Understanding the Effect of GCN Convolutions in Regression Tasks
- Title(参考訳): 回帰作業におけるGCN畳み込みの効果の理解
- Authors: Juntong Chen, Johannes Schmidt-Hieber, Claire Donnat, Olga Klopp,
- Abstract要約: グラフ畳み込みネットワーク(GCN)は、グラフ上の関数をモデル化する機械学習において重要な手法となっている。
グラフ構造が近隣ノードに類似した信号を示すことを示すネットワークを考える。
一般的な2つの畳み込み(元のGCNとGraphSAGEの畳み込み)が学習エラーにどのように影響するかを検討する。
- 参考スコア(独自算出の注目度): 8.299692647308323
- License:
- Abstract: Graph Convolutional Networks (GCNs) have become a pivotal method in machine learning for modeling functions over graphs. Despite their widespread success across various applications, their statistical properties (e.g., consistency, convergence rates) remain ill-characterized. To begin addressing this knowledge gap, we consider networks for which the graph structure implies that neighboring nodes exhibit similar signals and provide statistical theory for the impact of convolution operators. Focusing on estimators based solely on neighborhood aggregation, we examine how two common convolutions - the original GCN and GraphSAGE convolutions - affect the learning error as a function of the neighborhood topology and the number of convolutional layers. We explicitly characterize the bias-variance type trade-off incurred by GCNs as a function of the neighborhood size and identify specific graph topologies where convolution operators are less effective. Our theoretical findings are corroborated by synthetic experiments, and provide a start to a deeper quantitative understanding of convolutional effects in GCNs for offering rigorous guidelines for practitioners.
- Abstract(参考訳): グラフ畳み込みネットワーク(GCN)は、グラフ上の関数をモデル化する機械学習において重要な手法となっている。
様々な応用で広く成功しているにもかかわらず、その統計的性質(例えば、一貫性、収束率)はいまだに不適合である。
この知識ギャップに対処するために、グラフ構造が類似した信号を示すことを示すネットワークを考察し、畳み込み演算子の影響に関する統計理論を提供する。
近傍の集合のみに基づく推定器に着目し,2つの共通畳み込み(元のGCNとGraphSAGEの畳み込み)が,近隣のトポロジの関数としての学習誤差と畳み込み層の数にどのように影響するかを検討する。
我々はGCNによって引き起こされるバイアス分散型トレードオフを近傍の関数として明確に特徴付け、畳み込み作用素がより効果的でない特定のグラフトポロジーを特定する。
本研究は, 臨床医に厳格なガイドラインを提供するためのGCNの畳み込み効果について, 定量的に理解する上での出発点となる。
関連論文リスト
- Unitary convolutions for learning on graphs and groups [0.9899763598214121]
我々は、訓練中により安定したより深いネットワークを可能にするユニタリグループ畳み込みについて研究する。
論文の主な焦点はグラフニューラルネットワークであり、ユニタリグラフの畳み込みがオーバー・スムーシングを確実に回避していることを示す。
実験結果から,ベンチマークデータセット上でのユニタリグラフ畳み込みネットワークの競合性能が確認できた。
論文 参考訳(メタデータ) (2024-10-07T21:09:14Z) - On the Topology Awareness and Generalization Performance of Graph Neural Networks [6.598758004828656]
我々は,GNNのトポロジ的認識をいかなるトポロジ的特徴においても特徴付けるための包括的枠組みを導入する。
本研究は,各ベンチマークデータセットの経路距離を最短とする内在グラフを用いたケーススタディである。
論文 参考訳(メタデータ) (2024-03-07T13:33:30Z) - Graph Neural Networks Provably Benefit from Structural Information: A
Feature Learning Perspective [53.999128831324576]
グラフニューラルネットワーク(GNN)は、グラフ表現学習の先駆けとなった。
本研究では,特徴学習理論の文脈におけるグラフ畳み込みの役割について検討する。
論文 参考訳(メタデータ) (2023-06-24T10:21:11Z) - Counterfactual Intervention Feature Transfer for Visible-Infrared Person
Re-identification [69.45543438974963]
視覚赤外人物再識別タスク(VI-ReID)におけるグラフベースの手法は,2つの問題により,悪い一般化に悩まされている。
十分に訓練された入力特徴は、グラフトポロジーの学習を弱め、推論過程において十分に一般化されない。
本稿では,これらの問題に対処するためのCIFT法を提案する。
論文 参考訳(メタデータ) (2022-08-01T16:15:31Z) - Tuning the Geometry of Graph Neural Networks [0.7614628596146599]
空間グラフ畳み込み演算子はグラフニューラルネットワーク(GNN)の成功の鍵として認識されている
このアグリゲーション作用素は実際にチューナブルであり、作用素の特定の選択 -- 従って、ジオメトリを埋め込む -- がより適切であるような明示的なレギュレーションであることが示される。
論文 参考訳(メタデータ) (2022-07-12T23:28:03Z) - Generalization Guarantee of Training Graph Convolutional Networks with
Graph Topology Sampling [83.77955213766896]
グラフ畳み込みネットワーク(GCN)は近年,グラフ構造化データの学習において大きな成功を収めている。
スケーラビリティ問題に対処するため、Gsの学習におけるメモリと計算コストを削減するため、グラフトポロジサンプリングが提案されている。
本稿では,3層GCNのトレーニング(最大)におけるグラフトポロジサンプリングの最初の理論的正当性について述べる。
論文 参考訳(メタデータ) (2022-07-07T21:25:55Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Learning Connectivity with Graph Convolutional Networks for
Skeleton-based Action Recognition [14.924672048447338]
グラフのトポロジ特性を学習するグラフ畳み込みネットワークのための新しいフレームワークを提案する。
本手法の設計原理は制約対象関数の最適化に基づいている。
骨格に基づく行動認識の課題に対して行った実験は,提案手法の優位性を示している。
論文 参考訳(メタデータ) (2021-12-06T19:43:26Z) - How Neural Networks Extrapolate: From Feedforward to Graph Neural
Networks [80.55378250013496]
勾配勾配降下法によりトレーニングされたニューラルネットワークが、トレーニング分布の支持の外で学んだことを外挿する方法について検討する。
グラフニューラルネットワーク(GNN)は、より複雑なタスクでいくつかの成功を収めている。
論文 参考訳(メタデータ) (2020-09-24T17:48:59Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。