論文の概要: LLM-Consensus: Multi-Agent Debate for Visual Misinformation Detection
- arxiv url: http://arxiv.org/abs/2410.20140v2
- Date: Fri, 31 Jan 2025 20:55:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-04 15:57:53.303099
- Title: LLM-Consensus: Multi-Agent Debate for Visual Misinformation Detection
- Title(参考訳): LLM-Consensus:視覚的誤情報検出のためのマルチエージェント議論
- Authors: Kumud Lakara, Georgia Channing, Juil Sock, Christian Rupprecht, Philip Torr, John Collomosse, Christian Schroeder de Witt,
- Abstract要約: LLM-Consensusは誤情報検出のための新しいマルチエージェント討論システムである。
我々のフレームワークは、最先端の精度で説明可能な検出を可能にする。
- 参考スコア(独自算出の注目度): 26.84072878231029
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the most challenging forms of misinformation involves the out-of-context (OOC) use of images paired with misleading text, creating false narratives. Existing AI-driven detection systems lack explainability and require expensive finetuning. We address these issues with LLM-Consensus, a multi-agent debate system for OOC misinformation detection. LLM-Consensus introduces a novel multi-agent debate framework where multimodal agents collaborate to assess contextual consistency and request external information to enhance cross-context reasoning and decision-making. Our framework enables explainable detection with state-of-the-art accuracy even without domain-specific fine-tuning. Extensive ablation studies confirm that external retrieval significantly improves detection accuracy, and user studies demonstrate that LLM-Consensus boosts performance for both experts and non-experts. These results position LLM-Consensus as a powerful tool for autonomous and citizen intelligence applications.
- Abstract(参考訳): 誤報の最も困難な形態の1つは、誤解を招くテキストと組み合わせた画像のアウト・オブ・コンテクスト(OOC)の使用であり、偽の物語を生み出すことである。
既存のAI駆動検出システムは説明性がなく、高価な微調整を必要とする。
OOC誤情報検出のためのマルチエージェント討論システム LLM-Consensus でこの問題に対処する。
LLM-Consensusは、マルチモーダルエージェントが協調してコンテキスト整合性を評価し、外部情報を要求し、コンテキスト間の推論と意思決定を強化する、新しいマルチエージェント討論フレームワークを導入した。
我々のフレームワークは、ドメイン固有の微調整なしでも、最先端の精度で説明可能な検出を可能にする。
広範囲にわたるアブレーション研究は、外部検索が検出精度を大幅に向上することを確認し、ユーザ研究は、LLM-Consensusが専門家と非専門家の両方のパフォーマンスを向上することを示した。
これらの結果は、LLM-Consensusを自律および市民インテリジェンスアプリケーションのための強力なツールとして位置づけている。
関連論文リスト
- TAMO:Fine-Grained Root Cause Analysis via Tool-Assisted LLM Agent with Multi-Modality Observation Data [33.5606443790794]
大規模言語モデル(LLM)は、コンテキスト推論とドメイン知識の統合においてブレークスルーをもたらした。
細粒度根本原因解析のための多モード観測データ,すなわちTAMOを用いたツール支援LLMエージェントを提案する。
論文 参考訳(メタデータ) (2025-04-29T06:50:48Z) - Knowledge-Aware Iterative Retrieval for Multi-Agent Systems [0.0]
本稿では,新しい大規模言語モデル (LLM) によるエージェントフレームワークを提案する。
動的に進化する知識を活用することで、クエリを反復的に洗練し、文脈的証拠をフィルタリングする。
提案システムは、更新されたコンテキストの競合的および協調的な共有をサポートする。
論文 参考訳(メタデータ) (2025-03-17T15:27:02Z) - CRAT: A Multi-Agent Framework for Causality-Enhanced Reflective and Retrieval-Augmented Translation with Large Language Models [59.8529196670565]
CRATは、RAGと因果強化自己回帰を利用して翻訳課題に対処する、新しいマルチエージェント翻訳フレームワークである。
以上の結果からCRATは翻訳精度を著しく向上させ,特に文脈に敏感な単語や語彙の出現に寄与することが示唆された。
論文 参考訳(メタデータ) (2024-10-28T14:29:11Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Audit-LLM: Multi-Agent Collaboration for Log-based Insider Threat Detection [16.154903877808795]
Audit-LLMは3つの協調エージェントからなるマルチエージェントログベースのインサイダー脅威検出フレームワークである。
本稿では,2つの独立実行者が推論交換を通じて結論を反復的に洗練し,合意に達するための,ペアワイズ・エビデンスに基づくマルチエージェント・ディベート(EMAD)機構を提案する。
論文 参考訳(メタデータ) (2024-08-12T11:33:45Z) - MMAU: A Holistic Benchmark of Agent Capabilities Across Diverse Domains [54.117238759317004]
大規模マルチタスクエージェント理解(MMAU)ベンチマークは、複雑な環境設定を必要としない包括的なオフラインタスクを特徴としている。
ツールユース、DAG(Directed Acyclic Graph)QA、データサイエンスと機械学習コーディング、コンテストレベルのプログラミング、数学の5分野にわたるモデルを評価する。
3K以上の異なるプロンプトを含む20の精巧に設計されたタスクにより、MMAUはLLMエージェントの強度と限界を評価するための包括的なフレームワークを提供する。
論文 参考訳(メタデータ) (2024-07-18T00:58:41Z) - RAG-based Crowdsourcing Task Decomposition via Masked Contrastive Learning with Prompts [21.69333828191263]
本稿では、自然言語理解の観点からタスク分解(TD)をイベント検出として再認識する、検索強化世代ベースのクラウドソーシングフレームワークを提案する。
本稿では,TD (PBCT) のための Prompt-based Contrastive Learning framework を提案する。
実験結果は,教師付きおよびゼロショット検出における本手法の競合性を実証した。
論文 参考訳(メタデータ) (2024-06-04T08:34:19Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
視覚的コンテキスト獲得と論理的推論の集約は、視覚的推論タスクに取り組む上で重要であると我々は主張する。
我々はCantorと呼ばれる革新的なマルチモーダルCoTフレームワークを提案し、その特徴は知覚決定アーキテクチャである。
提案手法の有効性を実証し,マルチモーダルCoT性能の大幅な向上を示した。
論文 参考訳(メタデータ) (2024-04-24T17:59:48Z) - SNIFFER: Multimodal Large Language Model for Explainable Out-of-Context
Misinformation Detection [18.356648843815627]
アウト・オブ・コンテクスト(OOC)の誤報は、聴衆を誤解させる最も簡単かつ効果的な方法の1つである。
現在の手法は、画像テキストの一貫性を評価することに重点を置いているが、その判断には説得力のある説明が欠けている。
我々は、OOC誤情報検出と説明のために特別に設計された、新しいマルチモーダルな大規模言語モデルであるSNIFFERを紹介する。
論文 参考訳(メタデータ) (2024-03-05T18:04:59Z) - Beyond the Known: Investigating LLMs Performance on Out-of-Domain Intent
Detection [34.135738700682055]
本稿では,ChatGPTで表される大規模言語モデル(LLM)を包括的に評価する。
LLMには強力なゼロショット機能と少数ショット機能があるが、フルリソースで微調整されたモデルに比べれば依然として不利である。
論文 参考訳(メタデータ) (2024-02-27T07:02:10Z) - Large Multimodal Agents: A Survey [78.81459893884737]
大規模言語モデル(LLM)は、テキストベースのAIエージェントのパワーで優れたパフォーマンスを実現している。
LLMを利用したAIエージェントをマルチモーダルドメインに拡張することに焦点を当てた、新たな研究トレンドがある。
本総説は, この急速に発展する分野において, 今後の研究に有用な洞察とガイドラインを提供することを目的としている。
論文 参考訳(メタデータ) (2024-02-23T06:04:23Z) - LEMMA: Towards LVLM-Enhanced Multimodal Misinformation Detection with External Knowledge Augmentation [58.524237916836164]
外部知識を付加したLVLM強化マルチモーダル誤報検出システム LEMMAを提案する。
提案手法は,Twitter と Fakeddit のデータセットにおいて,上位ベースライン LVLM の精度を 7% と 13% に向上させる。
論文 参考訳(メタデータ) (2024-02-19T08:32:27Z) - Learning to Break: Knowledge-Enhanced Reasoning in Multi-Agent Debate System [16.830182915504555]
マルチエージェント討論システム(MAD)は、真理を追求する人間の議論の過程を模倣する。
様々なエージェントが、限られた知識の背景から、適切に、高度に一貫した認知をさせることは困難である。
本稿では,Underline Knowledge-underlineEnhanced frameworkを用いたUnderlineMulti-underlineAgent UnderlineDebateを提案する。
論文 参考訳(メタデータ) (2023-12-08T06:22:12Z) - From Chaos to Clarity: Claim Normalization to Empower Fact-Checking [57.024192702939736]
Claim Normalization(別名 ClaimNorm)は、複雑でノイズの多いソーシャルメディア投稿を、より単純で分かりやすい形式に分解することを目的としている。
本稿では,チェーン・オブ・ソートとクレーム・チェック・バシネス推定を利用した先駆的アプローチであるCACNを提案する。
実験により, CACNは様々な評価尺度において, いくつかの基準値を上回る性能を示した。
論文 参考訳(メタデータ) (2023-10-22T16:07:06Z) - Stance Detection with Collaborative Role-Infused LLM-Based Agents [39.75103353173015]
スタンス検出は、ウェブおよびソーシャルメディア研究におけるコンテンツ分析に不可欠である。
しかし、姿勢検出には、著者の暗黙の視点を推測する高度な推論が必要である。
LLMを異なる役割に指定した3段階のフレームワークを設計する。
複数のデータセットにまたがって最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-10-16T14:46:52Z) - Concise and Organized Perception Facilitates Reasoning in Large Language Models [31.238220405009617]
推論に取り組むために大規模な言語モデル(LLM)をエクスプロイトすることは、注目を集めている。
複雑な論理的問題において満足な結果を達成することは依然として非常に困難であり、コンテキスト内の多くの前提とマルチホップ推論が特徴である。
本研究は,まず情報フローの観点からそのメカニズムを考察し,不規則な内容や無関係な内容を扱う際に,人間のような認知バイアスに類似した困難に直面することを明らかにする。
論文 参考訳(メタデータ) (2023-10-05T04:47:49Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
マルチモーダルな操作検出とグラウンド処理のためのトランスフォーマーベースのフレームワークを構築する。
本フレームワークは,マルチモーダルアライメントの能力を維持しながら,モダリティ特有の特徴を同時に探求する。
本稿では,グローバルな文脈的キューを各モーダル内に適応的に集約する暗黙的操作クエリ(IMQ)を提案する。
論文 参考訳(メタデータ) (2023-09-22T06:55:41Z) - Building Interpretable and Reliable Open Information Retriever for New
Domains Overnight [67.03842581848299]
情報検索は、オープンドメイン質問応答(QA)など、多くのダウンストリームタスクにとって重要な要素である。
本稿では、エンティティ/イベントリンクモデルとクエリ分解モデルを用いて、クエリの異なる情報単位により正確にフォーカスする情報検索パイプラインを提案する。
より解釈可能で信頼性が高いが,提案したパイプラインは,5つのIRおよびQAベンチマークにおける通過カバレッジと記述精度を大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-08-09T07:47:17Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
複数のエージェントが"tit for tat"の状態で議論を表現するマルチエージェント議論(MAD)フレームワークを提案し、審査員が議論プロセスを管理して最終解を得る。
我々のフレームワークは、深い熟考を必要とするタスクに役立ちそうなLSMにおける散発的思考を奨励する。
論文 参考訳(メタデータ) (2023-05-30T15:25:45Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteRにより、RMはLLM生成した知識コレクションを使用してクエリの知識を拡張することができる。
InteRは、最先端手法と比較して総合的に優れたゼロショット検索性能を実現する。
論文 参考訳(メタデータ) (2023-05-12T11:58:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。