論文の概要: A Derivational ChainBank for Modern Standard Arabic
- arxiv url: http://arxiv.org/abs/2410.20463v1
- Date: Sun, 27 Oct 2024 14:43:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:18:18.202419
- Title: A Derivational ChainBank for Modern Standard Arabic
- Title(参考訳): 現代標準アラビア語のための派生的連鎖銀行
- Authors: Reham Marzouk, Sondos Krouna, Nizar Habash,
- Abstract要約: ChainBankはアラビア語の派生形態をモデリングするための新しいフレームワークである。
それは、その派生的重要性を反映した派生した単語の連鎖を構築することによって、形と意味の接続を確立する。
- 参考スコア(独自算出の注目度): 8.805757963653317
- License:
- Abstract: This study presents the ``Arabic Derivational ChainBank,'' a novel framework for modeling Arabic derivational morphology. It establishes connections between forms and meanings by constructing a chain of derived words that reflect their derivational significance. To expedite the process, a rule-based methodology was employed, avoiding time-consuming manual annotation. The derivational network was then aligned with the CamelMorph morphological analyzer database. This two-step process resulted in a chain of derived word lemmas linked to their roots, encompassing 23,333 evaluated derivational relations, thereby demonstrating the efficiency of the ChainBank.
- Abstract(参考訳): 本研究は、アラビア語の派生形態をモデル化するための新しい枠組みである「アラビアデリバティブ・チェーンバンク」を提示する。
それは、その派生的重要性を反映した派生した単語の連鎖を構築することによって、形と意味の接続を確立する。
プロセスの迅速化のために、ルールベースの方法論が採用され、時間を要する手作業によるアノテーションが回避された。
その後、導出ネットワークはCamelMorph形態解析データベースと整列した。
この2段階のプロセスにより、そのルーツに関連付けられた派生語レムマの連鎖が生じ、23,333の導出関係が評価され、チェインバンクの効率が示された。
関連論文リスト
- Meaning Representations from Trajectories in Autoregressive Models [106.63181745054571]
入力テキストを拡張可能なすべてのトラジェクトリの分布を考慮し,自己回帰言語モデルから意味表現を抽出する。
この戦略はプロンプトフリーであり、微調整は必要とせず、事前訓練された自己回帰モデルにも適用できる。
我々は,大規模なモデルから得られた表現が人間のアノテーションとよく一致し,意味的類似性タスクにおける他のゼロショットおよびプロンプトフリーメソッドよりも優れており,標準埋め込みが扱えないより複雑なエンタテインメントや包含タスクの解決に使用できることを実証的に示す。
論文 参考訳(メタデータ) (2023-10-23T04:35:58Z) - Scalable Learning of Latent Language Structure With Logical Offline
Cycle Consistency [71.42261918225773]
概念的には、LOCCOは、トレーニング対象のセマンティクスを使用してラベルなしテキストのアノテーションを生成する、自己学習の一形態と見なすことができる。
追加ボーナスとして、LOCCOによって生成されたアノテーションは、神経テキスト生成モデルをトレーニングするために自明に再利用することができる。
論文 参考訳(メタデータ) (2023-05-31T16:47:20Z) - Bayesian Networks for Named Entity Prediction in Programming Community
Question Answering [0.0]
ベイジアンネットワークを用いた自然言語処理のための新しい手法を提案し,その文脈を予測・解析する。
ベイジアンネットワークとBIC、BDeu、K2、Chow-Liuといったスコアメトリクスを比較した。
さらに,有向非巡回グラフの可視化を行い,意味的関係を解析する。
論文 参考訳(メタデータ) (2023-02-26T07:26:36Z) - It Takes Two Flints to Make a Fire: Multitask Learning of Neural
Relation and Explanation Classifiers [40.666590079580544]
一般化と説明可能性の間の緊張を緩和する関係抽出のための説明可能なアプローチを提案する。
提案手法では,関係抽出のための分類器を共同で訓練するマルチタスク学習アーキテクチャを用いる。
このアプローチにグローバルな説明をもたらすために、モデル出力をルールに変換する。
論文 参考訳(メタデータ) (2022-04-25T03:53:12Z) - Reasoning over Hybrid Chain for Table-and-Text Open Domain QA [69.8436986668218]
我々はChAin中心の推論と事前学習フレームワーク(CARP)を提案する。
CARPはハイブリッドチェーンを使用して、質問応答のための表とテキスト間の明示的な中間推論プロセスをモデル化する。
また,クロスモダリティ推論プロセスの同定において,事前学習モデルを強化するために,新しいチェーン中心の事前学習手法を提案する。
論文 参考訳(メタデータ) (2022-01-15T16:11:55Z) - Learning compositional structures for semantic graph parsing [81.41592892863979]
本稿では、AM依存性解析をニューラル潜在変数モデルで直接トレーニングする方法を示す。
本モデルでは,いくつかの言語現象を独自に把握し,教師あり学習に匹敵する精度を達成している。
論文 参考訳(メタデータ) (2021-06-08T14:20:07Z) - Lexical semantic change for Ancient Greek and Latin [61.69697586178796]
歴史的文脈における単語の正しい意味の連想は、ダイアクロニック研究の中心的な課題である。
我々は、動的ベイズ混合モデルに基づくセマンティック変化に対する最近の計算的アプローチに基づいて構築する。
本研究では,動的ベイズ混合モデルと最先端埋め込みモデルとのセマンティックな変化を系統的に比較する。
論文 参考訳(メタデータ) (2021-01-22T12:04:08Z) - Enhanced word embeddings using multi-semantic representation through
lexical chains [1.8199326045904998]
フレキシブル・レキシカル・チェーンIIと固定レキシカル・チェーンIIという2つの新しいアルゴリズムを提案する。
これらのアルゴリズムは、語彙連鎖から派生した意味関係、語彙データベースからの以前の知識、および単一のシステムを形成するビルディングブロックとしての単語埋め込みにおける分布仮説の堅牢性を組み合わせている。
その結果、語彙チェーンと単語埋め込み表現の統合は、より複雑なシステムに対しても、最先端の結果を維持します。
論文 参考訳(メタデータ) (2021-01-22T09:43:33Z) - Autoencoding Pixies: Amortised Variational Inference with Graph
Convolutions for Functional Distributional Semantics [12.640283469603355]
Pixie Autoencoderはグラフ畳み込みニューラルネットワークを用いて関数分散セマンティックスの生成モデルを拡張して、償却変分推論を実行する。
論文 参考訳(メタデータ) (2020-05-06T17:46:40Z) - Analysing Lexical Semantic Change with Contextualised Word
Representations [7.071298726856781]
本稿では,BERTニューラルネットワークモデルを用いて単語使用率の表現を求める手法を提案する。
我々は新しい評価データセットを作成し、モデル表現と検出された意味変化が人間の判断と正に相関していることを示す。
論文 参考訳(メタデータ) (2020-04-29T12:18:14Z) - Forecasting Sequential Data using Consistent Koopman Autoencoders [52.209416711500005]
クープマン理論に関連する新しい物理学に基づく手法が導入された。
本稿では,既存の作業の多くと異なり,前方・後方のダイナミクスを生かした新しいコンシスタント・クープマン・オートエンコーダモデルを提案する。
このアプローチの鍵となるのは、一貫性のある力学と関連するクープマン作用素との相互作用を探索する新しい解析である。
論文 参考訳(メタデータ) (2020-03-04T18:24:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。