Design, Implementation and Practical Energy-Efficiency Evaluation of a Blockchain Based Academic Credential Verification System for Low-Power Nodes
- URL: http://arxiv.org/abs/2410.20605v2
- Date: Tue, 01 Apr 2025 16:18:58 GMT
- Title: Design, Implementation and Practical Energy-Efficiency Evaluation of a Blockchain Based Academic Credential Verification System for Low-Power Nodes
- Authors: Gabriel Fernández-Blanco, Iván Froiz-Míguez, Paula Fraga-Lamas, Tiago M. Fernández-Caramés,
- Abstract summary: The educational system manages extensive documentation and paperwork, which can lead to human errors and sometimes abuse or fraud, such as the falsification of diplomas, certificates or other credentials.<n>This article proposes a solution aimed at recording and verifying academic records through a decentralized application that is supported by a smart contract deployed in the CPU blockchain.<n>The proposed solution is evaluated in terms of performance and energy-efficiency, comparing the results obtained with a traditional Proof-of-Work consensus protocol and the new Proof-of-Authority (PoA) protocol.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The educational system manages extensive documentation and paperwork, which can lead to human errors and sometimes abuse or fraud, such as the falsification of diplomas, certificates or other credentials. In fact, in the last years, multiple cases of fraud have been detected, which have a significant cost to society, since they harm the trustworthiness of certificates and academic institutions. To tackle such an issue, this article proposes a solution aimed at recording and verifying academic records through a decentralized application that is supported by a smart contract deployed in the Ethereum blockchain and by a decentralized storage system based on Inter-Planetary File System (IPFS). The proposed solution is evaluated in terms of performance and energy-efficiency, comparing the results obtained with a traditional Proof-of-Work (PoW) consensus protocol and the new Proof-of-Authority (PoA) protocol. The results shown in this paper indicate that the latter is clearly greener and demands less CPU load. Moreover, this article compares the performance of a traditional computer and two SBCs (a Raspberry Pi 4 and an Orange Pi One), showing that is possible to make use of the latter low-power devices to implement blockchain nodes but at the cost of higher response latency. Furthermore, the impact of Ethereum gas limit is evaluated, demonstrating its significant influence on the blockchain network performance. Thus, this article provides guidelines, useful practical evaluations and key findings that will help the next generation of green blockchain developers and researchers.
Related papers
- Trusted Compute Units: A Framework for Chained Verifiable Computations [41.94295877935867]
This paper introduces the Trusted Compute Unit (TCU), a unifying framework that enables composable and interoperable computations across heterogeneous technologies.
By enabling secure off-chain interactions without incurring on-chain confirmation delays or gas fees, TCUs significantly improve system performance and scalability.
arXiv Detail & Related papers (2025-04-22T09:01:55Z) - Exploring User Acceptance of Blockchain-Based Student Certificate Sharing System: A Study on Non Fungible Token (NFT) Utilization [0.0]
This paper builds upon the Technology Acceptance Model TAM to scrutinize the impact of perceived ease of use, perceived usability, and attitude towards the system on the intention to use.
Results indicate that individual constructs notably affect the intention to use the system, and their collective impact is statistically significant.
arXiv Detail & Related papers (2024-12-18T17:47:17Z) - A Comprehensive Survey on Green Blockchain: Developing the Next Generation of Energy Efficient and Sustainable Blockchain Systems [0.0]
This article analyzes the main components of blockchains and explores strategies to reduce their energy consumption.
For such a purpose, consensus mechanisms are compared, recommendations for reducing network communications energy consumption are provided.
The main challenges and limitations of reducing power consumption in blockchain systems are analyzed.
arXiv Detail & Related papers (2024-10-27T20:22:25Z) - Blockchain-enhanced Integrity Verification in Educational Content Assessment Platform: A Lightweight and Cost-Efficient Approach [0.0]
The growing digitization of education presents challenges in maintaining the integrity and trustworthiness of educational content.
Traditional systems fail to ensure data authenticity and prevent unauthorized alterations, particularly in the evaluation of teachers' professional activities.
This paper introduces a-enhanced framework for the Electronic Platform for Expertise of Content (EPEC), a platform used for reviewing and assessing educational materials.
arXiv Detail & Related papers (2024-09-29T23:56:57Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - Towards Credential-based Device Registration in DApps for DePINs with ZKPs [46.08150780379237]
We propose a credential-based device registration (CDR) mechanism that verifies device credentials on the blockchain.
We present a general system model, and technically evaluate CDR using zkSNARKs with Groth16 and Marlin.
arXiv Detail & Related papers (2024-06-27T09:50:10Z) - SoK: Public Blockchain Sharding [19.82054462793622]
This study provides a systemization of knowledge of public blockchain sharding.
It includes the core components of sharding systems, challenges, limitations, and mechanisms of the latest sharding protocols.
arXiv Detail & Related papers (2024-05-30T22:38:40Z) - IT Strategic alignment in the decentralized finance (DeFi): CBDC and digital currencies [49.1574468325115]
Decentralized finance (DeFi) is a disruptive-based financial infrastructure.
This paper seeks to answer two main questions 1) What are the common IT elements in the DeFi?
And 2) How the elements to the IT strategic alignment in DeFi?
arXiv Detail & Related papers (2024-05-17T10:19:20Z) - Gophy: Novel Proof-of-Useful-Work blockchain architecture for High Energy Physics [0.0]
The architecture is being implemented using Golang and can be run inside the CbmRoot software environment.
The blockchain features a token-based cryptocurrency that is rewarded to miners that donate computational power.
The implementation named gophy is being implemented in Golang and is expected to be open-sourced before the end of 2024.
arXiv Detail & Related papers (2024-04-13T22:34:48Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0 [59.94605620983965]
We design a Graph Attention Network (GAT)-based reliable block propagation optimization framework for blockchain-enabled Web 3.0.
To achieve the reliability of block propagation, we introduce a reputation mechanism based on the subjective logic model.
Considering that the GAT possesses the excellent ability to process graph-structured data, we utilize the GAT with reinforcement learning to obtain the optimal block propagation trajectory.
arXiv Detail & Related papers (2024-03-20T01:58:38Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - A Scale-out Decentralized Blockchain Ledger System for Web3.0 [5.327844605578174]
This paper proposes EZchain -- a novel decentralized scale-out" ledger system designed for web3.0.
Without compromising security and decentralization, EZchain successfully accomplishes the following milestones.
arXiv Detail & Related papers (2023-12-01T01:34:48Z) - FedChain: An Efficient and Secure Consensus Protocol based on Proof of Useful Federated Learning for Blockchain [0.3480973072524161]
The core of the blockchain is the consensus protocol, which establishes consensus among all the participants.
We propose an efficient and secure consensus protocol based on proof of useful federated learning for blockchain (called FedChain)
Our approach has been tested and validated through extensive experiments, demonstrating its performance.
arXiv Detail & Related papers (2023-08-29T08:04:07Z) - Resilient Consensus Sustained Collaboratively [6.090550359575682]
We present the design of our Power-of-Collaboration protocol, which guards existing PoS/BFT blockchains against long-range attacks.
PoC guarantees fairness and accountability and only marginally degrades the throughput of the underlying system.
arXiv Detail & Related papers (2023-02-05T07:33:57Z) - Design, Implementation, and Evaluation of Blockchain-Based Trusted
Achievement Record System for Students in Higher Education [0.0]
This study introduces a blockchain-based achievement record system that produces a verifiable record of achievements.
We present the design and implementation of the system and its components and tools.
We evaluate the system through a number of studies to measure the system's usability, effectiveness, performance, and cost.
arXiv Detail & Related papers (2022-04-26T19:07:15Z) - Quantum-resistance in blockchain networks [46.63333997460008]
This paper describes the work carried out by the Inter-American Development Bank, the IDB Lab, LACChain, Quantum Computing (CQC), and Tecnologico de Monterrey to identify and eliminate quantum threats in blockchain networks.
The advent of quantum computing threatens internet protocols and blockchain networks because they utilize non-quantum resistant cryptographic algorithms.
arXiv Detail & Related papers (2021-06-11T23:39:25Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
A proof of work (PoW) is an important cryptographic construct enabling a party to convince others that they invested some effort in solving a computational task.
In this work, we examine the hardness of finding such chain of PoWs against quantum strategies.
We prove that the chain of PoWs problem reduces to a problem we call multi-solution Bernoulli search, for which we establish its quantum query complexity.
arXiv Detail & Related papers (2020-12-30T18:03:56Z) - Proof of Learning (PoLe): Empowering Machine Learning with Consensus
Building on Blockchains [7.854034211489588]
We propose a new consensus mechanism, Proof of Learning (PoLe), which directs the spent for consensus toward optimization of neural networks (NN)
In our mechanism, the training/testing data are released to the entire blockchain network (BCN) and the consensus nodes train NN models on the data.
We show that PoLe can achieve a more stable block generation rate, which leads to more efficient transaction processing.
arXiv Detail & Related papers (2020-07-29T22:53:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.