論文の概要: Joint Channel Selection using FedDRL in V2X
- arxiv url: http://arxiv.org/abs/2410.20687v1
- Date: Thu, 03 Oct 2024 14:04:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-03 09:21:05.232949
- Title: Joint Channel Selection using FedDRL in V2X
- Title(参考訳): V2XにおけるFedDRLを用いた共同チャネル選択
- Authors: Lorenzo Mancini, Safwan Labbi, Karim Abed Meraim, Fouzi Boukhalfa, Alain Durmus, Paul Mangold, Eric Moulines,
- Abstract要約: 車両間通信技術(V2X)は、車両、デバイス、インフラ間の通信を可能にすることで、輸送に革命をもたらしている。
本稿では,異なる技術を持つ車両が1つ以上のアクセスポイント(AP)を選択してネットワーク上でメッセージを送信する,共同チャネル選択の問題について検討する。
本稿では,フェデレートディープ強化学習(Federated Deep Reinforcement Learning, FedDRL)に基づくアプローチを提案する。
- 参考スコア(独自算出の注目度): 20.96900576250422
- License:
- Abstract: Vehicle-to-everything (V2X) communication technology is revolutionizing transportation by enabling interactions between vehicles, devices, and infrastructures. This connectivity enhances road safety, transportation efficiency, and driver assistance systems. V2X benefits from Machine Learning, enabling real-time data analysis, better decision-making, and improved traffic predictions, making transportation safer and more efficient. In this paper, we study the problem of joint channel selection, where vehicles with different technologies choose one or more Access Points (APs) to transmit messages in a network. In this problem, vehicles must learn a strategy for channel selection, based on observations that incorporate vehicles' information (position and speed), network and communication data (Signal-to-Interference-plus-Noise Ratio from past communications), and environmental data (road type). We propose an approach based on Federated Deep Reinforcement Learning (FedDRL), which enables each vehicle to benefit from other vehicles' experiences. Specifically, we apply the federated Proximal Policy Optimization (FedPPO) algorithm to this task. We show that this method improves communication reliability while minimizing transmission costs and channel switches. The efficiency of the proposed solution is assessed via realistic simulations, highlighting the potential of FedDRL to advance V2X technology.
- Abstract(参考訳): 車両間通信技術(V2X)は、車両、デバイス、インフラ間の通信を可能にすることで、輸送に革命をもたらしている。
この接続により、道路安全、輸送効率、運転支援システムが強化される。
V2Xは機械学習の恩恵を受け、リアルタイムデータ分析、意思決定の改善、トラフィック予測の改善により、輸送をより安全かつ効率的にする。
本稿では,異なる技術を持つ車両が1つ以上のアクセスポイント(AP)を選択してネットワーク上でメッセージを送信する,共同チャネル選択の問題について検討する。
この問題では、車両の情報(位置と速度)、ネットワークおよび通信データ(過去の通信による信号対干渉+雑音比)、および環境データ(道路型)を取り入れた観測に基づいて、車両がチャネル選択の戦略を学ぶ必要がある。
本稿では,フェデレートディープ強化学習(Federated Deep Reinforcement Learning, FedDRL)に基づくアプローチを提案する。
具体的には,FedPPO(Federated Proximal Policy Optimization)アルゴリズムを課題に適用する。
本手法は伝送コストとチャネルスイッチを最小化しながら通信信頼性を向上させる。
提案手法の有効性を現実的なシミュレーションにより評価し,V2X技術の進歩に向けたFedDRLの可能性を明らかにする。
関連論文リスト
- SPformer: A Transformer Based DRL Decision Making Method for Connected Automated Vehicles [9.840325772591024]
本稿ではトランスフォーマーと強化学習アルゴリズムに基づくCAV意思決定アーキテクチャを提案する。
学習可能なポリシートークンは、多車連携ポリシーの学習媒体として使用される。
我々のモデルは交通シナリオにおける車両の全ての状態情報をうまく活用することができる。
論文 参考訳(メタデータ) (2024-09-23T15:16:35Z) - A V2X-based Privacy Preserving Federated Measuring and Learning System [0.0]
本稿では,V2V(Var-to-Vehicle)通信を介して,同志の車両にリアルタイムなデータを提供するフェデレート計測学習システムを提案する。
また,交通ネットワークの予測モデルを作成するために,車両ネットワーク(V2N)リンク上で連合学習スキームを運用している。
その結果,提案方式では学習性能が向上し,アグリゲータサーバ側での盗聴を防止することができた。
論文 参考訳(メタデータ) (2024-01-24T23:11:11Z) - V2X-Lead: LiDAR-based End-to-End Autonomous Driving with
Vehicle-to-Everything Communication Integration [4.166623313248682]
本稿では,V2X(Vine-to-Everything)通信を統合したLiDARを用いたエンドツーエンド自動運転手法を提案する。
提案手法は,搭載したLiDARセンサとV2X通信データを融合させることにより,不完全な部分的観測を処理することを目的としている。
論文 参考訳(メタデータ) (2023-09-26T20:26:03Z) - Reinforcement Learning for Joint V2I Network Selection and Autonomous
Driving Policies [14.518558523319518]
自動運転車(AV)の信頼性向上に向けたV2I通信の重要性が高まっている
道路衝突を最小限に抑えるため,AVのネットワーク選択と運転ポリシーを同時に最適化することが重要である。
我々は,効率的なネットワーク選択と自律運転ポリシーを特徴付ける強化学習フレームワークを開発した。
論文 参考訳(メタデータ) (2022-08-03T04:33:02Z) - Traffic Management of Autonomous Vehicles using Policy Based Deep
Reinforcement Learning and Intelligent Routing [0.26249027950824505]
本稿では,交差点の混雑状況に応じて交通信号を調整するDRLに基づく信号制御システムを提案する。
交差点の後方の道路での渋滞に対処するため,道路ネットワーク上で車両のバランスをとるために再ルート手法を用いた。
論文 参考訳(メタデータ) (2022-06-28T02:46:20Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
本稿では,車間認識を用いたエンドツーエンド学習モデルであるCOOPERNAUTを紹介する。
われわれのAutoCastSim実験は、我々の協調知覚駆動モデルが平均成功率を40%向上させることを示唆している。
論文 参考訳(メタデータ) (2022-05-04T17:55:12Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
本稿では,フェデレートラーニングモデルに基づく不安度を測る新しい手法を提案する。
バッテリー消費を推定し、車両ネットワークにエネルギー効率の高いルートプランニングを提供する。
論文 参考訳(メタデータ) (2021-11-13T15:03:44Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - Vehicular Cooperative Perception Through Action Branching and Federated
Reinforcement Learning [101.64598586454571]
強化学習に基づく車両関連、リソースブロック(RB)割り当て、協調認識メッセージ(CPM)のコンテンツ選択を可能にする新しいフレームワークが提案されている。
車両全体のトレーニングプロセスをスピードアップするために、フェデレーションRLアプローチが導入されます。
その結果、フェデレーションRLはトレーニングプロセスを改善し、非フェデレーションアプローチと同じ時間内により良いポリシーを達成できることが示された。
論文 参考訳(メタデータ) (2020-12-07T02:09:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。