論文の概要: Reprogramming Pretrained Target-Specific Diffusion Models for Dual-Target Drug Design
- arxiv url: http://arxiv.org/abs/2410.20688v2
- Date: Tue, 26 Nov 2024 07:26:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:30:53.765204
- Title: Reprogramming Pretrained Target-Specific Diffusion Models for Dual-Target Drug Design
- Title(参考訳): デュアルターゲットドラッグデザインのための訓練済みターゲット特異的拡散モデルの再プログラミング
- Authors: Xiangxin Zhou, Jiaqi Guan, Yijia Zhang, Xingang Peng, Liang Wang, Jianzhu Ma,
- Abstract要約: 生成タスクとして二重ターゲットのドラッグデザインを定式化し、シナジスティックな薬物の組み合わせに基づいて、潜在的なターゲットペアの新たなデータセットをキュレートする。
本稿では,単一ターゲットタンパク質-リガンド複合体対で訓練された拡散モデルを用いた二重ターゲット薬物の設計を提案する。
我々のアルゴリズムは、単一目標事前学習で得られた知識をゼロショット方式で二重目標シナリオに転送することができる。
- 参考スコア(独自算出の注目度): 21.666641467687214
- License:
- Abstract: Dual-target therapeutic strategies have become a compelling approach and attracted significant attention due to various benefits, such as their potential in overcoming drug resistance in cancer therapy. Considering the tremendous success that deep generative models have achieved in structure-based drug design in recent years, we formulate dual-target drug design as a generative task and curate a novel dataset of potential target pairs based on synergistic drug combinations. We propose to design dual-target drugs with diffusion models that are trained on single-target protein-ligand complex pairs. Specifically, we align two pockets in 3D space with protein-ligand binding priors and build two complex graphs with shared ligand nodes for SE(3)-equivariant composed message passing, based on which we derive a composed drift in both 3D and categorical probability space in the generative process. Our algorithm can well transfer the knowledge gained in single-target pretraining to dual-target scenarios in a zero-shot manner. We also repurpose linker design methods as strong baselines for this task. Extensive experiments demonstrate the effectiveness of our method compared with various baselines.
- Abstract(参考訳): デュアルターゲット治療戦略は説得力のあるアプローチとなり、がん治療における薬物耐性を克服する可能性など、様々な利益のために大きな注目を集めている。
近年, 構造に基づく医薬品設計において, 深層生成モデルが大きな成功をおさめたことを踏まえ, 生成タスクとして二重ターゲットの医薬品設計を定式化し, シナジスティックな薬物の組み合わせに基づいて, 潜在的標的対の新たなデータセットをキュレートする。
本稿では,単一ターゲットタンパク質-リガンド複合体対で訓練された拡散モデルを用いた二重ターゲット薬物の設計を提案する。
具体的には、3次元空間内の2つのポケットをタンパク質-リガンド結合先行と整列し、SE(3)-同変合成メッセージパッシングのための共有リガンドノードを持つ2つの複素グラフを構築し、生成過程における合成ドリフトとカテゴリー的確率空間の両方を導出する。
我々のアルゴリズムは、単一目標事前学習で得られた知識をゼロショット方式で二重目標シナリオに転送することができる。
また、このタスクの強力なベースラインとしてリンカ設計手法を再利用する。
各種ベースラインと比較して,本手法の有効性を示す実験を行った。
関連論文リスト
- A Cross-Field Fusion Strategy for Drug-Target Interaction Prediction [85.2792480737546]
既存の方法は、DTI予測中にグローバルなタンパク質情報を利用することができない。
ローカルおよびグローバルなタンパク質情報を取得するために、クロスフィールド情報融合戦略が採用されている。
SiamDTI予測法は、新規薬物や標的に対する他の最先端(SOTA)法よりも高い精度を達成する。
論文 参考訳(メタデータ) (2024-05-23T13:25:20Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
既存の構造に基づく薬物設計法は、すべての配位子原子を等しく扱う。
腕と足場を分解した新しい拡散モデルDecompDiffを提案する。
提案手法は,高親和性分子の生成における最先端性能を実現する。
論文 参考訳(メタデータ) (2024-02-26T05:21:21Z) - Co-guiding for Multi-intent Spoken Language Understanding [53.30511968323911]
本稿では,2つのタスク間の相互指導を実現するための2段階のフレームワークを実装した,コガイドネットと呼ばれる新しいモデルを提案する。
第1段階では,単一タスクによる教師付きコントラスト学習を提案し,第2段階ではコガイドによる教師付きコントラスト学習を提案する。
マルチインテリジェントSLU実験の結果,我々のモデルは既存のモデルよりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-22T08:06:22Z) - Meta-Path-based Probabilistic Soft Logic for Drug-Target Interaction
Prediction [36.08294497336554]
薬物-標的相互作用(DTI)予測は、薬物が標的に束縛されるかどうかを予測することを目的としている。
最近提案された手法のほとんどは、DTI予測に単一のドラッグ・ドラッグ類似性およびターゲット・ターゲット類似性情報を使用する。
本稿では,ネットワークに基づく薬物と薬物の相互作用予測手法を提案する。
論文 参考訳(メタデータ) (2023-06-25T02:30:38Z) - Protein Design with Guided Discrete Diffusion [67.06148688398677]
タンパク質設計における一般的なアプローチは、生成モデルと条件付きサンプリングのための識別モデルを組み合わせることである。
離散拡散モデルのためのガイダンス手法であるdiffusioN Optimized Smpling (NOS)を提案する。
NOSは、構造に基づく手法の重要な制限を回避し、シーケンス空間で直接設計を行うことができる。
論文 参考訳(メタデータ) (2023-05-31T16:31:24Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - Reinforced Genetic Algorithm for Structure-based Drug Design [38.134929249388406]
SBDD(Structure-based drug design)は、疾患関連タンパク質(ターゲット)に結合する分子を見つけることにより、薬物候補を見つけることを目的とした薬物設計である。
本稿では,ニューラルネットワークを用いた遺伝的アルゴリズム(Reinforced Genetic Algorithm, RGA)を提案する。
論文 参考訳(メタデータ) (2022-11-28T22:59:46Z) - Structure-based Drug Design with Equivariant Diffusion Models [40.73626627266543]
本稿では,タンパク質ポケットに新しい条件を付加したSE(3)-同変拡散モデルDiffSBDDを提案する。
我々のサイリコ実験では、DiffSBDDが地上の真実データの統計を効果的に捉えていることが示されています。
これらの結果は、拡散モデルが従来の方法よりも正確に構造データの複雑な分布を表すという仮定を支持する。
論文 参考訳(メタデータ) (2022-10-24T15:51:21Z) - Evening the Score: Targeting SARS-CoV-2 Protease Inhibition in Graph
Generative Models for Therapeutic Candidates [11.853524110656991]
SARS-CoV-2ウイルスタンパク質を標的とした新規薬物候補の治療法設計について検討する。
抗SARS活性を持つ薬物のデータセットに類似した構造を持つ分子を生成するオートエンコーダを用いる。
生成過程において、薬物類似性、合成アクセシビリティ、および抗SARS活性のバランスをとるために、いくつかの設計目標に対する最適化を検討する。
論文 参考訳(メタデータ) (2021-05-07T18:39:25Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
本稿では,抗がん剤感受性の予測にトランスファーラーニングを適用した。
我々は、ソースデータセット上で予測モデルをトレーニングし、ターゲットデータセット上でそれを洗練する古典的な転送学習フレームワークを適用した。
アンサンブル転送学習パイプラインは、LightGBMと異なるアーキテクチャを持つ2つのディープニューラルネットワーク(DNN)モデルを使用して実装されている。
論文 参考訳(メタデータ) (2020-05-13T20:29:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。