論文の概要: Evening the Score: Targeting SARS-CoV-2 Protease Inhibition in Graph
Generative Models for Therapeutic Candidates
- arxiv url: http://arxiv.org/abs/2105.10489v1
- Date: Fri, 7 May 2021 18:39:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-29 20:47:07.818501
- Title: Evening the Score: Targeting SARS-CoV-2 Protease Inhibition in Graph
Generative Models for Therapeutic Candidates
- Title(参考訳): evening the score: target sars-cov-2 protease inhibitor in graph generative models for therapeutic candidate
- Authors: Jenna Bilbrey, Logan Ward, Sutanay Choudhury, Neeraj Kumar, Ganesh
Sivaraman
- Abstract要約: SARS-CoV-2ウイルスタンパク質を標的とした新規薬物候補の治療法設計について検討する。
抗SARS活性を持つ薬物のデータセットに類似した構造を持つ分子を生成するオートエンコーダを用いる。
生成過程において、薬物類似性、合成アクセシビリティ、および抗SARS活性のバランスをとるために、いくつかの設計目標に対する最適化を検討する。
- 参考スコア(独自算出の注目度): 11.853524110656991
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We examine a pair of graph generative models for the therapeutic design of
novel drug candidates targeting SARS-CoV-2 viral proteins. Due to a sense of
urgency, we chose well-validated models with unique strengths: an autoencoder
that generates molecules with similar structures to a dataset of drugs with
anti-SARS activity and a reinforcement learning algorithm that generates highly
novel molecules. During generation, we explore optimization toward several
design targets to balance druglikeness, synthetic accessability, and anti-SARS
activity based on \icfifty. This generative
framework\footnote{https://github.com/exalearn/covid-drug-design} will
accelerate drug discovery in future pandemics through the high-throughput
generation of targeted therapeutic candidates.
- Abstract(参考訳): 我々はSARS-CoV-2ウイルスタンパク質を標的とした新規薬物候補の治療設計のためのグラフ生成モデルについて検討した。
緊急性の感覚から、抗SARS活性を持つ薬物のデータセットに類似した構造を持つ分子を生成するオートエンコーダと、非常に新しい分子を生成する強化学習アルゴリズムを選択した。
生成過程において, 薬物類似性, 合成アクセシビリティ, および, \icfiftyに基づく抗SARS活性のバランスをとるために, いくつかの設計目標に対する最適化を検討する。
この生成フレームワークは、将来のパンデミックにおける薬物発見を、標的とする治療候補の高速な生成を通じて加速させる。
関連論文リスト
- Reprogramming Pretrained Target-Specific Diffusion Models for Dual-Target Drug Design [21.666641467687214]
生成タスクとして二重ターゲットのドラッグデザインを定式化し、シナジスティックな薬物の組み合わせに基づいて、潜在的なターゲットペアの新たなデータセットをキュレートする。
本稿では,単一ターゲットタンパク質-リガンド複合体対で訓練された拡散モデルを用いた二重ターゲット薬物の設計を提案する。
我々のアルゴリズムは、単一目標事前学習で得られた知識をゼロショット方式で二重目標シナリオに転送することができる。
論文 参考訳(メタデータ) (2024-10-28T02:48:31Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
本稿では,テキスト内薬物相乗学習のための新しい設定とモデルを提案する。
特定のがん細胞標的の文脈における10~20の薬物相乗関係の「個人化データセット」を作成した。
私たちの目標は、その文脈で追加の薬物シナジー関係を予測することです。
論文 参考訳(メタデータ) (2023-06-19T17:03:46Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - Tailoring Molecules for Protein Pockets: a Transformer-based Generative
Solution for Structured-based Drug Design [133.1268990638971]
標的タンパク質の構造に基づくデノボ薬物の設計は、新規な薬物候補を提供することができる。
そこで本研究では,特定のターゲットに対して,対象薬物をスクラッチから直接生成できるTamGentという生成ソリューションを提案する。
論文 参考訳(メタデータ) (2022-08-30T09:32:39Z) - Accelerating Inhibitor Discovery for Multiple SARS-CoV-2 Targets with a
Single, Sequence-Guided Deep Generative Framework [47.14853881703749]
我々は、新規な薬物様阻害剤分子の発見に向けた、単一の深層生成機構の広範な有用性を実証する。
このフレームワークは、ターゲット認識設計を行うために、生成モデルから新規分子をターゲットシーケンス条件でサンプリングする。
最も強力なスパイクRBD阻害剤は、SARS-CoV-2変異株に対して幅広いスペクトル活性を有する稀な非共有結合型抗ウイルス剤として出現した。
論文 参考訳(メタデータ) (2022-04-19T17:59:46Z) - Genetic Constrained Graph Variational Autoencoder for COVID-19 Drug
Discovery [0.0]
そこで本研究では,GCGVAE (Genematic Constrained Graph Variational Autoencoder) と呼ばれる新しいモデルを提案する。
SARS、HIV、Hep3、MERSなど、さまざまなウイルスのタンパク質構造のデータに基づいてモデルをトレーニングし、SARS-CoV-2の可能な薬物を生成するために使用しました。
生成分子はSARS-CoV-2を阻害する効果が高い。
論文 参考訳(メタデータ) (2021-04-23T16:10:15Z) - Benchmarking Deep Graph Generative Models for Optimizing New Drug
Molecules for COVID-19 [11.853524110656991]
ターゲット特性を持つ新規薬物化合物の設計は、生成モデル研究の鍵となる分野である。
本稿では、グラフ生成モデルに基づく小さな薬物分子設計パイプラインと、新型コロナウイルスの標的薬物候補を設計するための2つの最先端グラフ生成モデルの比較研究について述べる。
論文 参考訳(メタデータ) (2021-02-09T17:49:26Z) - Designing a Prospective COVID-19 Therapeutic with Reinforcement Learning [50.57291257437373]
SARS-CoV-2パンデミックは、治療のための世界的なレースを生み出した。
1つのアプローチは、ヒトアンジオテンシン変換酵素2(ACE2)の新規な変異体の設計に焦点を当てる
我々は、強化学習問題として、新しいタンパク質設計の枠組みを定式化する。
論文 参考訳(メタデータ) (2020-12-03T07:35:38Z) - PaccMann$^{RL}$ on SARS-CoV-2: Designing antiviral candidates with
conditional generative models [2.0750380105212116]
新型コロナウイルス(COVID-19)の世界的なパンデミックへの急速な発展に伴い、世界中の科学者が、効果的な抗ウイルス治療薬を必死に探している。
タンパク質標的に適合した抗ウイルス候補薬の条件付きデノボ設計のための深層学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-05-27T11:30:15Z) - Accelerating Antimicrobial Discovery with Controllable Deep Generative
Models and Molecular Dynamics [109.70543391923344]
CLaSS(Controlled Latent attribute Space Smpling)は、分子の属性制御のための効率的な計算手法である。
深層学習分類器と原子論シミュレーションから得られた新しい特徴を併用して, 生成分子を付加的なキー属性としてスクリーニングする。
提案手法は, 強い広帯域能を有する非毒性抗菌性ペプチド(AMP)を設計するためのものである。
論文 参考訳(メタデータ) (2020-05-22T15:57:58Z) - Network-principled deep generative models for designing drug
combinations as graph sets [13.920460847160605]
併用療法は副作用を軽減しつつ治療効果を向上させることが示されている。
膨大な化学空間と小さな分子の組み合わせのための不明確な設計原則に直面すると、計算薬物結合設計は、耐性に反する薬物結合の発見を加速する可能性を満たす生成モデルを見ていない。
我々は,グラフ構造化ドメイン知識を結合的に埋め込み,強化学習に基づくケミカルグラフセットデザイナを反復的に訓練することにより,薬物の組み合わせ設計のための最初の深層生成モデルを開発した。
論文 参考訳(メタデータ) (2020-04-16T17:22:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。