Stealthy Jailbreak Attacks on Large Language Models via Benign Data Mirroring
- URL: http://arxiv.org/abs/2410.21083v1
- Date: Mon, 28 Oct 2024 14:48:05 GMT
- Title: Stealthy Jailbreak Attacks on Large Language Models via Benign Data Mirroring
- Authors: Honglin Mu, Han He, Yuxin Zhou, Yunlong Feng, Yang Xu, Libo Qin, Xiaoming Shi, Zeming Liu, Xudong Han, Qi Shi, Qingfu Zhu, Wanxiang Che,
- Abstract summary: We propose an improved transfer attack method that guides malicious prompt construction by locally training a mirror model of the target black-box model through benign data distillation.
Our approach achieved a maximum attack success rate of 92%, or a balanced value of 80% with an average of 1.5 detectable jailbreak queries per sample against GPT-3.5 Turbo.
- Score: 47.40698758003993
- License:
- Abstract: Large language model (LLM) safety is a critical issue, with numerous studies employing red team testing to enhance model security. Among these, jailbreak methods explore potential vulnerabilities by crafting malicious prompts that induce model outputs contrary to safety alignments. Existing black-box jailbreak methods often rely on model feedback, repeatedly submitting queries with detectable malicious instructions during the attack search process. Although these approaches are effective, the attacks may be intercepted by content moderators during the search process. We propose an improved transfer attack method that guides malicious prompt construction by locally training a mirror model of the target black-box model through benign data distillation. This method offers enhanced stealth, as it does not involve submitting identifiable malicious instructions to the target model during the search phase. Our approach achieved a maximum attack success rate of 92%, or a balanced value of 80% with an average of 1.5 detectable jailbreak queries per sample against GPT-3.5 Turbo on a subset of AdvBench. These results underscore the need for more robust defense mechanisms.
Related papers
- xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking [32.89084809038529]
Black-box jailbreak is an attack where crafted prompts bypass safety mechanisms in large language models.
We propose a novel black-box jailbreak method leveraging reinforcement learning (RL)
We introduce a comprehensive jailbreak evaluation framework incorporating keywords, intent matching, and answer validation to provide a more rigorous and holistic assessment of jailbreak success.
arXiv Detail & Related papers (2025-01-28T06:07:58Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
We introduce Layer-AdvPatcher, a methodology designed to defend against jailbreak attacks.
We use an unlearning strategy to patch specific layers within large language models through self-augmented datasets.
Our framework reduces the harmfulness and attack success rate of jailbreak attacks.
arXiv Detail & Related papers (2025-01-05T19:06:03Z) - Turning Logic Against Itself : Probing Model Defenses Through Contrastive Questions [51.51850981481236]
We introduce POATE, a novel jailbreak technique that harnesses contrastive reasoning to provoke unethical responses.
PoATE crafts semantically opposing intents and integrates them with adversarial templates, steering models toward harmful outputs with remarkable subtlety.
To counter this, we propose Intent-Aware CoT and Reverse Thinking CoT, which decompose queries to detect malicious intent and reason in reverse to evaluate and reject harmful responses.
arXiv Detail & Related papers (2025-01-03T15:40:03Z) - Jailbreaking? One Step Is Enough! [6.142918017301964]
Large language models (LLMs) excel in various tasks but remain vulnerable to jailbreak attacks, where adversaries manipulate prompts to generate harmful outputs.
We propose a Reverse Embedded Defense Attack (REDA) mechanism that disguises the attack intention as the "defense" intention.
To enhance the model's confidence and guidance in "defensive" intentions, we adopt in-context learning (ICL) with a small number of attack examples.
arXiv Detail & Related papers (2024-12-17T07:33:41Z) - Immune: Improving Safety Against Jailbreaks in Multi-modal LLMs via Inference-Time Alignment [97.38766396447369]
Despite training-time safety alignment, MLLMs remain vulnerable to jailbreak attacks.
We propose Immune, an inference-time defense framework that leverages a safe reward model to defend against jailbreak attacks.
arXiv Detail & Related papers (2024-11-27T19:00:10Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
We propose a novel method that "translates" garbled adversarial prompts into coherent and human-readable natural language adversarial prompts.
It also offers a new approach to discovering effective designs for jailbreak prompts, advancing the understanding of jailbreak attacks.
Our method achieves over 90% attack success rates against Llama-2-Chat models on AdvBench, despite their outstanding resistance to jailbreak attacks.
arXiv Detail & Related papers (2024-10-15T06:31:04Z) - MoJE: Mixture of Jailbreak Experts, Naive Tabular Classifiers as Guard for Prompt Attacks [2.873719680183099]
This paper advocates for the significance of jailbreak attack prevention on Large Language Models (LLMs)
We introduce MoJE, a novel guardrail architecture designed to surpass current limitations in existing state-of-the-art guardrails.
MoJE excels in detecting jailbreak attacks while maintaining minimal computational overhead during model inference.
arXiv Detail & Related papers (2024-09-26T10:12:19Z) - AdaPPA: Adaptive Position Pre-Fill Jailbreak Attack Approach Targeting LLMs [34.221522224051846]
We propose an adaptive position pre-fill jailbreak attack approach for executing jailbreak attacks on Large Language Models (LLMs)
Our method leverages the model's instruction-following capabilities to first output safe content, then exploits its narrative-shifting abilities to generate harmful content.
Our method can improve the attack success rate by 47% on the widely recognized secure model (Llama2) compared to existing approaches.
arXiv Detail & Related papers (2024-09-11T00:00:58Z) - Hide Your Malicious Goal Into Benign Narratives: Jailbreak Large Language Models through Carrier Articles [10.109063166962079]
Large Language Model (LLM) jailbreak refers to a type of attack aimed to bypass the safeguard of an LLM to generate contents that are inconsistent with the safe usage guidelines.
This paper proposes a novel blackbox jailbreak approach, which involves crafting the payload prompt by strategically injecting the prohibited query into a carrier article.
We evaluate our approach using JailbreakBench, testing against four target models across 100 distinct jailbreak objectives.
arXiv Detail & Related papers (2024-08-20T20:35:04Z) - Jailbroken: How Does LLM Safety Training Fail? [92.8748773632051]
"jailbreak" attacks on early releases of ChatGPT elicit undesired behavior.
We investigate why such attacks succeed and how they can be created.
New attacks utilizing our failure modes succeed on every prompt in a collection of unsafe requests.
arXiv Detail & Related papers (2023-07-05T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.