論文の概要: Zero-Shot Action Recognition in Surveillance Videos
- arxiv url: http://arxiv.org/abs/2410.21113v1
- Date: Mon, 28 Oct 2024 15:13:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 17:07:41.360696
- Title: Zero-Shot Action Recognition in Surveillance Videos
- Title(参考訳): 監視映像におけるゼロショット動作認識
- Authors: Joao Pereira, Vasco Lopes, David Semedo, Joao Neves,
- Abstract要約: 現在のAIベースのビデオ監視システムは、広範囲の微調整を必要とするコアコンピュータビジョンモデルに依存している。
VideoLLaMA2はゼロショットのパフォーマンスが飛躍的に向上し、ベースラインを20%上回る。
さらに、Self-ReSはゼロショットアクション認識性能を44.6%に向上させた。
- 参考スコア(独自算出の注目度): 5.070026408553652
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing demand for surveillance in public spaces presents significant challenges due to the shortage of human resources. Current AI-based video surveillance systems heavily rely on core computer vision models that require extensive finetuning, which is particularly difficult in surveillance settings due to limited datasets and difficult setting (viewpoint, low quality, etc.). In this work, we propose leveraging Large Vision-Language Models (LVLMs), known for their strong zero and few-shot generalization, to tackle video understanding tasks in surveillance. Specifically, we explore VideoLLaMA2, a state-of-the-art LVLM, and an improved token-level sampling method, Self-Reflective Sampling (Self-ReS). Our experiments on the UCF-Crime dataset show that VideoLLaMA2 represents a significant leap in zero-shot performance, with 20% boost over the baseline. Self-ReS additionally increases zero-shot action recognition performance to 44.6%. These results highlight the potential of LVLMs, paired with improved sampling techniques, for advancing surveillance video analysis in diverse scenarios.
- Abstract(参考訳): 公共空間における監視の需要の増加は、人的資源不足による大きな課題を呈している。
現在のAIベースのビデオ監視システムは、大規模な微調整を必要とするコアコンピュータビジョンモデルに大きく依存している。
本研究では,LVLM(Large Vision-Language Models,LVLM)を用いて,監視における映像理解タスクへの取り組みを提案する。
具体的には、最先端のLVLMであるVideoLLaMA2と、改良されたトークンレベルサンプリング手法であるSelf-ReSについて検討する。
UCF-Crimeデータセットを用いた実験では、ビデオLLaMA2はゼロショット性能において大きな飛躍を示し、ベースラインを20%上回る結果となった。
さらに、Self-ReSはゼロショットアクション認識性能を44.6%に向上させた。
これらの結果から,LVLMと改良されたサンプリング技術を組み合わせることで,様々なシナリオにおける監視映像分析の進展が促進される可能性が示唆された。
関連論文リスト
- Benchmarking Large Vision-Language Models on Fine-Grained Image Tasks: A Comprehensive Evaluation [53.84282335629258]
我々は349万の質問と332万の画像からなる総合的なきめ細かい評価ベンチマーク、すなわちFG-BMKを導入する。
本評価では,人間指向と機械指向の両方の観点からLVLMを体系的に検討する。
トレーニングパラダイム,モダリティアライメント,摂動感受性,および細粒度カテゴリー推論がタスクパフォーマンスに与える影響について,重要な知見を明らかにした。
論文 参考訳(メタデータ) (2025-04-21T09:30:41Z) - Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1 [53.894789613838654]
ビデオ理解におけるMLLMのポストトレーニング手法を評価するためのベンチマークであるSEED-Bench-R1を紹介する。
複雑な現実世界のビデオや、複数の質問の形式での複雑な日常的な計画タスクも含んでいる。
Qwen2-VL-Instruct-7Bをベースモデルとして、RLと教師付き微調整(SFT)を比較した。
我々の詳細な分析では、RLは視覚知覚を増強するが、しばしばコヒーレント推論連鎖を減少させる。
論文 参考訳(メタデータ) (2025-03-31T17:55:23Z) - LAVID: An Agentic LVLM Framework for Diffusion-Generated Video Detection [14.687867348598035]
大規模視覚言語モデル(LVLM)は、AI生成コンテンツ検出の新しいツールとなっている。
本稿では,LVLMを用いた新たなai生成ビデオ検出システムであるLAVIDを提案する。
提案するパイプラインは,検出のための明示的な知識ツールのセットを自動的に選択し,自己書換えによって構造を適応的に調整する。
論文 参考訳(メタデータ) (2025-02-20T19:34:58Z) - MomentSeeker: A Comprehensive Benchmark and A Strong Baseline For Moment Retrieval Within Long Videos [62.01402470874109]
我々は、一般的な長時間ビデオモーメント検索タスクの処理において、検索モデルの性能を評価するベンチマークであるMomentSeekerを提案する。
平均で500秒を超える長いビデオが組み込まれており、長時間ビデオのモーメント検索に特化した最初のベンチマークとなっている。
幅広いタスクカテゴリ(Moment Search, Caption Alignment, Image-conditioned Moment Search, Video-conditioned Moment Searchなど)と多様なアプリケーションシナリオをカバーする。
さらに、MLLMベースのLVMRレトリバーを合成データ上に微調整し、ベンチマークで高い性能を示す。
論文 参考訳(メタデータ) (2025-02-18T05:50:23Z) - VideoRefer Suite: Advancing Spatial-Temporal Object Understanding with Video LLM [81.15525024145697]
ビデオ大言語モデル (Video Large Language Models, ビデオLLM) は近年, 一般的なビデオ理解において顕著な能力を示した。
しかし、それらは主に全体論的理解に焦点を当て、きめ細かい空間的・時間的詳細を捉えるのに苦労している。
我々は,高精細度空間時間映像理解のためのビデオLLMを実現するために,VideoRefer Suiteを導入した。
論文 参考訳(メタデータ) (2024-12-31T18:56:46Z) - VideoLights: Feature Refinement and Cross-Task Alignment Transformer for Joint Video Highlight Detection and Moment Retrieval [8.908777234657046]
大規模言語モデルと視覚言語モデル(LLM/LVLM)は、様々な領域で広く普及している。
ここでは、(i)Convolutional ProjectionとFeature Refinementモジュールを通してこれらの制限に対処する新しいHD/MRフレームワークであるVideoLightsを提案する。
QVHighlights、TVSum、Charades-STAベンチマークに関する総合的な実験は、最先端のパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-12-02T14:45:53Z) - AutoBench-V: Can Large Vision-Language Models Benchmark Themselves? [55.14033256706175]
視覚・言語情報の統合を促進するためには,LVLM(Large Vision-Language Models)が不可欠である。
本稿では,需要評価のための自動フレームワークであるAutoBench-Vを紹介する。
5つの要求されたユーザ入力にまたがる7つのLVLMの広範な評価を通じて、このフレームワークの有効性と信頼性を示す。
論文 参考訳(メタデータ) (2024-10-28T17:55:08Z) - MissionGNN: Hierarchical Multimodal GNN-based Weakly Supervised Video Anomaly Recognition with Mission-Specific Knowledge Graph Generation [5.0923114224599555]
本稿では,新しい階層グラフニューラルネットワーク(GNN)モデルであるMissionGNNを紹介する。
提案手法は,大規模マルチモーダルモデル上での重勾配計算を回避し,従来の手法の限界を回避する。
我々のモデルは,従来のセグメンテーションベースやマルチモーダルアプローチの制約を伴わずに,リアルタイムビデオ解析のための実用的で効率的なソリューションを提供する。
論文 参考訳(メタデータ) (2024-06-27T01:09:07Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [56.391404083287235]
視覚中心のアプローチで設計したマルチモーダルLLM(MLLM)のファミリーであるCambrian-1を紹介する。
本研究は,様々な視覚表現を評価するためのインタフェースとして,LLMとビジュアルインストラクションチューニングを用いた。
モデルウェイト、コード、サポートツール、データセット、詳細なインストラクションチューニングと評価のレシピを提供しています。
論文 参考訳(メタデータ) (2024-06-24T17:59:42Z) - Distilling Aggregated Knowledge for Weakly-Supervised Video Anomaly Detection [11.250490586786878]
ビデオ異常検出は、監視ビデオにおける異常事象を識別できる自動モデルを開発することを目的としている。
集約表現から比較的単純なモデルに知識を蒸留することで,最先端の性能が得られることを示す。
論文 参考訳(メタデータ) (2024-06-05T00:44:42Z) - How Good is my Video LMM? Complex Video Reasoning and Robustness Evaluation Suite for Video-LMMs [98.37571997794072]
CVRR-ES(Complex Video Reasoning and Robustness Evaluation Suite)について紹介する。
CVRR-ESは、11種類の実世界のビデオ次元にわたるビデオLMMの性能を包括的に評価する。
我々の発見は、次世代の人間中心AIシステムを構築する上で貴重な洞察を提供する。
論文 参考訳(メタデータ) (2024-05-06T17:59:45Z) - Good Questions Help Zero-Shot Image Reasoning [110.1671684828904]
質問駆動型視覚探索(QVix)は、大規模視覚言語モデル(LVLM)の探索能力を高める新しい促進戦略である。
QVixは、視覚的なシーンのより広い探索を可能にし、視覚的な質問応答や視覚的エンターテイメントといったタスクにおけるLVLMの推論精度と深さを改善している。
我々は,ScienceQAやきめ細かな視覚分類など,難易度の高いゼロショット視覚言語ベンチマークの評価を行い,QVixが既存の手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2023-12-04T03:18:51Z) - ViLMA: A Zero-Shot Benchmark for Linguistic and Temporal Grounding in
Video-Language Models [28.305932427801682]
ViLMA(ビデオ言語モデルアセスメント)は,VidLMのきめ細かい機能を評価するタスク非依存のベンチマークである。
ViLMAは、コントロールされた評価スイートを提供し、これらのモデルの真の可能性と、人間レベルの理解と比較してパフォーマンスのギャップを浮き彫りにしている。
静止画像を用いた視覚言語モデルに比べ,現在のVidLMの接地能力は良くないことを示す。
論文 参考訳(メタデータ) (2023-11-13T02:13:13Z) - Towards Surveillance Video-and-Language Understanding: New Dataset,
Baselines, and Challenges [10.809558232493236]
本稿では,監視ビデオ・言語理解の新しい研究方向を提案し,最初のマルチモーダル監視ビデオデータセットを構築した。
実世界の監視データセットであるUCF-Crimeに,詳細なイベント内容とタイミングを手作業でアノテートする。
我々は、この新しく作成されたデータセット上で、4つのマルチモーダルタスクのためのSOTAモデルをベンチマークし、監視ビデオおよび言語理解のための新しいベースラインとして機能する。
論文 参考訳(メタデータ) (2023-09-25T07:46:56Z) - Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models [61.28463542324576]
視覚言語モデル(VLM)は近年,人間のような出力を生成できる視覚アシスタントとして,強力な有効性を示している。
我々は、既存の最先端のVLMを評価し、最高の性能モデルでさえ、強力な視覚的推論能力と一貫性を示すことができないことを発見した。
本稿では,VLMの推論性能と一貫性の向上を目的とした2段階トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-08T17:49:44Z) - An Efficient Recurrent Adversarial Framework for Unsupervised Real-Time
Video Enhancement [132.60976158877608]
対比ビデオの例から直接学習する効率的な対比ビデオ強化フレームワークを提案する。
特に,空間的情報と時間的情報の暗黙的統合のための局所的モジュールとグローバルモジュールからなる新しい再帰的セルを導入する。
提案する設計では,フレーム間の情報伝達を効率的に行うことができ,複雑なネットワークの必要性を低減できる。
論文 参考訳(メタデータ) (2020-12-24T00:03:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。