Robustness and Generalization in Quantum Reinforcement Learning via Lipschitz Regularization
- URL: http://arxiv.org/abs/2410.21117v1
- Date: Mon, 28 Oct 2024 15:20:35 GMT
- Title: Robustness and Generalization in Quantum Reinforcement Learning via Lipschitz Regularization
- Authors: Nico Meyer, Julian Berberich, Christopher Mutschler, Daniel D. Scherer,
- Abstract summary: We propose a regularized version of a quantum policy gradient approach, named the RegQPG algorithm.
We show that training with RegQPG improves the robustness and generalization of the resulting policies.
- Score: 2.8445375187526154
- License:
- Abstract: Quantum machine learning leverages quantum computing to enhance accuracy and reduce model complexity compared to classical approaches, promising significant advancements in various fields. Within this domain, quantum reinforcement learning has garnered attention, often realized using variational quantum circuits to approximate the policy function. This paper addresses the robustness and generalization of quantum reinforcement learning by combining principles from quantum computing and control theory. Leveraging recent results on robust quantum machine learning, we utilize Lipschitz bounds to propose a regularized version of a quantum policy gradient approach, named the RegQPG algorithm. We show that training with RegQPG improves the robustness and generalization of the resulting policies. Furthermore, we introduce an algorithmic variant that incorporates curriculum learning, which minimizes failures during training. Our findings are validated through numerical experiments, demonstrating the practical benefits of our approach.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Separable Power of Classical and Quantum Learning Protocols Through the Lens of No-Free-Lunch Theorem [70.42372213666553]
The No-Free-Lunch (NFL) theorem quantifies problem- and data-independent generalization errors regardless of the optimization process.
We categorize a diverse array of quantum learning algorithms into three learning protocols designed for learning quantum dynamics under a specified observable.
Our derived NFL theorems demonstrate quadratic reductions in sample complexity across CLC-LPs, ReQu-LPs, and Qu-LPs.
We attribute this performance discrepancy to the unique capacity of quantum-related learning protocols to indirectly utilize information concerning the global phases of non-orthogonal quantum states.
arXiv Detail & Related papers (2024-05-12T09:05:13Z) - Quantum Advantage Actor-Critic for Reinforcement Learning [5.579028648465784]
We propose a novel quantum reinforcement learning approach that combines the Advantage Actor-Critic algorithm with variational quantum circuits.
We empirically test multiple quantum Advantage Actor-Critic configurations with the well known Cart Pole environment to evaluate our approach in control tasks with continuous state spaces.
arXiv Detail & Related papers (2024-01-13T11:08:45Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum Policy Gradient Algorithm with Optimized Action Decoding [1.3946033794136758]
We introduce a novel quality measure that enables us to optimize the classical post-processing required for action selection.
With this technique, we successfully execute a full training routine on a 5-qubit hardware device.
arXiv Detail & Related papers (2022-12-13T15:42:10Z) - Quantum Reinforcement Learning via Policy Iteration [6.961253535504979]
We provide a general framework for performing quantum reinforcement learning via policy iteration.
We validate our framework by designing and analyzing: emphquantum policy evaluation methods for infinite horizon discounted problems.
We study the theoretical and experimental performance of our quantum algorithms on two environments from OpenAI's Gym.
arXiv Detail & Related papers (2022-03-03T18:08:17Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Variational Quantum Soft Actor-Critic [1.90365714903665]
We develop a quantum reinforcement learning algorithm based on soft actor-critic -- one of the state-of-the-art methods for continuous control.
We show that this quantum version of soft actor-critic is comparable with the original soft actor-critic, using much less adjustable parameters.
arXiv Detail & Related papers (2021-12-20T06:31:06Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Variational quantum policies for reinforcement learning [0.0]
Variational quantum circuits have recently gained popularity as quantum machine learning models.
In this work, we investigate how to construct and train reinforcement learning policies based on variational quantum circuits.
arXiv Detail & Related papers (2021-03-09T17:33:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.