Quantum Policy Gradient Algorithm with Optimized Action Decoding
- URL: http://arxiv.org/abs/2212.06663v2
- Date: Mon, 22 May 2023 14:07:04 GMT
- Title: Quantum Policy Gradient Algorithm with Optimized Action Decoding
- Authors: Nico Meyer, Daniel D. Scherer, Axel Plinge, Christopher Mutschler, and
Michael J. Hartmann
- Abstract summary: We introduce a novel quality measure that enables us to optimize the classical post-processing required for action selection.
With this technique, we successfully execute a full training routine on a 5-qubit hardware device.
- Score: 1.3946033794136758
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum machine learning implemented by variational quantum circuits (VQCs)
is considered a promising concept for the noisy intermediate-scale quantum
computing era. Focusing on applications in quantum reinforcement learning, we
propose a specific action decoding procedure for a quantum policy gradient
approach. We introduce a novel quality measure that enables us to optimize the
classical post-processing required for action selection, inspired by local and
global quantum measurements. The resulting algorithm demonstrates a significant
performance improvement in several benchmark environments. With this technique,
we successfully execute a full training routine on a 5-qubit hardware device.
Our method introduces only negligible classical overhead and has the potential
to improve VQC-based algorithms beyond the field of quantum reinforcement
learning.
Related papers
- Classical post-processing approach for quantum amplitude estimation [0.0]
We propose an approach for quantum amplitude estimation (QAE) designed to enhance computational efficiency while minimizing the reliance on quantum resources.
Our method leverages quantum computers to generate a sequence of signals, from which the quantum amplitude is inferred through classical post-processing techniques.
arXiv Detail & Related papers (2025-02-08T15:51:31Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Surrogate optimization of variational quantum circuits [1.0546736060336612]
Variational quantum eigensolvers are touted as a near-term algorithm capable of impacting many applications.
Finding algorithms and methods to improve convergence is important to accelerate the capabilities of near-term hardware for VQE.
arXiv Detail & Related papers (2024-04-03T18:00:00Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum Advantage Actor-Critic for Reinforcement Learning [5.579028648465784]
We propose a novel quantum reinforcement learning approach that combines the Advantage Actor-Critic algorithm with variational quantum circuits.
We empirically test multiple quantum Advantage Actor-Critic configurations with the well known Cart Pole environment to evaluate our approach in control tasks with continuous state spaces.
arXiv Detail & Related papers (2024-01-13T11:08:45Z) - Review of Ansatz Designing Techniques for Variational Quantum Algorithms [0.0]
In the NISQ era, variable-component subcircuits enable applications of quantum computing.
Existing research has improved the accuracy and efficiency of Variational Quantum Algorithm.
arXiv Detail & Related papers (2022-12-07T07:09:09Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Continuous-variable quantum approximate optimization on a programmable
photonic quantum processor [0.9558392439655016]
Variational quantum algorithms (VQAs) provide a promising approach to achieving quantum advantage for practical problems on noisy quantum devices.
We develop an automated collaborative computing system between a programmable photonic quantum computer and a classical computer.
Our work can be extended to the minimization of more general functions, providing an alternative to achieve the quantum advantage in practical problems.
arXiv Detail & Related papers (2022-06-15T00:00:47Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.