E(3)-invariant diffusion model for pocket-aware peptide generation
- URL: http://arxiv.org/abs/2410.21335v2
- Date: Thu, 31 Oct 2024 19:49:29 GMT
- Title: E(3)-invariant diffusion model for pocket-aware peptide generation
- Authors: Po-Yu Liang, Jun Bai,
- Abstract summary: We propose a new method of computer-assisted inhibitor discovery: de novo pocket-aware peptide structure and sequence generation network.
Our results demonstrate that our method achieves comparable performance to state-of-the-art models.
- Score: 1.9950682531209156
- License:
- Abstract: Biologists frequently desire protein inhibitors for a variety of reasons, including use as research tools for understanding biological processes and application to societal problems in agriculture, healthcare, etc. Immunotherapy, for instance, relies on immune checkpoint inhibitors to block checkpoint proteins, preventing their binding with partner proteins and boosting immune cell function against abnormal cells. Inhibitor discovery has long been a tedious process, which in recent years has been accelerated by computational approaches. Advances in artificial intelligence now provide an opportunity to make inhibitor discovery smarter than ever before. While extensive research has been conducted on computer-aided inhibitor discovery, it has mainly focused on either sequence-to-structure mapping, reverse mapping, or bio-activity prediction, making it unrealistic for biologists to utilize such tools. Instead, our work proposes a new method of computer-assisted inhibitor discovery: de novo pocket-aware peptide structure and sequence generation network. Our approach consists of two sequential diffusion models for end-to-end structure generation and sequence prediction. By leveraging angle and dihedral relationships between backbone atoms, we ensure an E(3)-invariant representation of peptide structures. Our results demonstrate that our method achieves comparable performance to state-of-the-art models, highlighting its potential in pocket-aware peptide design. This work offers a new approach for precise drug discovery using receptor-specific peptide generation.
Related papers
- Exploring Latent Space for Generating Peptide Analogs Using Protein Language Models [1.5146068448101742]
The proposed method requires only a single sequence of interest, avoiding the need for large datasets.
Our results show significant improvements over baseline models in similarity indicators of peptide structures, descriptors and bioactivities.
arXiv Detail & Related papers (2024-08-15T13:37:27Z) - BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments [112.25067497985447]
We introduce BioDiscoveryAgent, an agent that designs new experiments, reasons about their outcomes, and efficiently navigates the hypothesis space to reach desired solutions.
BioDiscoveryAgent can uniquely design new experiments without the need to train a machine learning model.
It achieves an average of 21% improvement in predicting relevant genetic perturbations across six datasets.
arXiv Detail & Related papers (2024-05-27T19:57:17Z) - PepGB: Facilitating peptide drug discovery via graph neural networks [36.744839520938825]
We propose PepGB, a deep learning framework to facilitate peptide early drug discovery by predicting peptide-protein interactions (PepPIs)
We derive an extended version, diPepGB, to tackle the bottleneck of modeling highly imbalanced data prevalent in lead generation and optimization processes.
arXiv Detail & Related papers (2024-01-26T06:13:09Z) - A Hierarchical Training Paradigm for Antibody Structure-sequence
Co-design [54.30457372514873]
We propose a hierarchical training paradigm (HTP) for the antibody sequence-structure co-design.
HTP consists of four levels of training stages, each corresponding to a specific protein modality.
Empirical experiments show that HTP sets the new state-of-the-art performance in the co-design problem.
arXiv Detail & Related papers (2023-10-30T02:39:15Z) - BeeTLe: A Framework for Linear B-Cell Epitope Prediction and
Classification [0.43512163406551996]
This paper presents a new deep learning-based framework for linear B-cell prediction as well as antibody type-specific classification.
We propose an amino acid encoding method based on eigen decomposition to help the model learn the representations of antibodies.
Experimental results on data curated from the largest public database demonstrate the validity of the proposed methods.
arXiv Detail & Related papers (2023-09-05T09:18:29Z) - xTrimoABFold: De novo Antibody Structure Prediction without MSA [77.47606749555686]
We develop a novel model named xTrimoABFold to predict antibody structure from antibody sequence.
The model was trained end-to-end on the antibody structures in PDB by minimizing the ensemble loss of domain-specific focal loss on CDR and the frame-aligned point loss.
arXiv Detail & Related papers (2022-11-30T09:26:08Z) - Using Genetic Programming to Predict and Optimize Protein Function [65.25258357832584]
We propose POET, a computational Genetic Programming tool based on evolutionary methods to enhance screening and mutagenesis in Directed Evolution.
As a proof-of-concept we use peptides that generate MRI contrast detected by the Chemical Exchange Saturation Transfer mechanism.
Our results indicate that a computational modelling tool like POET can help to find peptides with 400% better functionality than used before.
arXiv Detail & Related papers (2022-02-08T18:08:08Z) - AI-Bind: Improving Binding Predictions for Novel Protein Targets and
Ligands [9.135203550164833]
We show that state-of-the-art models fail to generalize to novel structures.
We introduce AI-Bind, a pipeline that combines network-based sampling strategies with unsupervised pre-training.
We illustrate the value of AI-Bind by predicting drugs and natural compounds with binding affinity to SARS-CoV-2 viral proteins.
arXiv Detail & Related papers (2021-12-25T01:52:58Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
We propose a novel approach to model intermolecular information with a three-way Transformer-based architecture.
Intermolecular Graph Transformer (IGT) outperforms state-of-the-art approaches by 9.1% and 20.5% over the second best for binding activity and binding pose prediction respectively.
IGT exhibits promising drug screening ability against SARS-CoV-2 by identifying 83.1% active drugs that have been validated by wet-lab experiments with near-native predicted binding poses.
arXiv Detail & Related papers (2021-10-14T13:28:02Z) - Interpretable Drug Synergy Prediction with Graph Neural Networks for
Human-AI Collaboration in Healthcare [23.151336811933938]
We propose a deep graph neural network, IDSP, to incorporate the gene-gene as well as gene-drug regulatory relationships in synergic drug combination predictions.
IDSP automatically learns weights of edges based on the gene and drug node relations, by a multi-layer perceptron (MLP) and aggregates information in an inductive manner.
We test IDWSP on signaling networks formulated by genes from 46 core cancer signaling pathways and drug combinations from NCI ALMANAC drug combination screening data.
arXiv Detail & Related papers (2021-05-14T22:20:29Z) - Accelerating Antimicrobial Discovery with Controllable Deep Generative
Models and Molecular Dynamics [109.70543391923344]
CLaSS (Controlled Latent attribute Space Sampling) is an efficient computational method for attribute-controlled generation of molecules.
We screen the generated molecules for additional key attributes by using deep learning classifiers in conjunction with novel features derived from atomistic simulations.
The proposed approach is demonstrated for designing non-toxic antimicrobial peptides (AMPs) with strong broad-spectrum potency.
arXiv Detail & Related papers (2020-05-22T15:57:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.