Large Language Models for Manufacturing
- URL: http://arxiv.org/abs/2410.21418v1
- Date: Mon, 28 Oct 2024 18:13:47 GMT
- Title: Large Language Models for Manufacturing
- Authors: Yiwei Li, Huaqin Zhao, Hanqi Jiang, Yi Pan, Zhengliang Liu, Zihao Wu, Peng Shu, Jie Tian, Tianze Yang, Shaochen Xu, Yanjun Lyu, Parker Blenk, Jacob Pence, Jason Rupram, Eliza Banu, Ninghao Liu, Linbing Wang, Wenzhan Song, Xiaoming Zhai, Kenan Song, Dajiang Zhu, Beiwen Li, Xianqiao Wang, Tianming Liu,
- Abstract summary: Large Language Models (LLMs) have the potential to transform manufacturing industry, offering new opportunities to optimize processes, improve efficiency, and drive innovation.
This paper focuses on the integration of LLMs into the manufacturing domain, focusing on their potential to automate and enhance various aspects of manufacturing.
- Score: 41.12098478080648
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid advances in Large Language Models (LLMs) have the potential to transform manufacturing industry, offering new opportunities to optimize processes, improve efficiency, and drive innovation. This paper provides a comprehensive exploration of the integration of LLMs into the manufacturing domain, focusing on their potential to automate and enhance various aspects of manufacturing, from product design and development to quality control, supply chain optimization, and talent management. Through extensive evaluations across multiple manufacturing tasks, we demonstrate the remarkable capabilities of state-of-the-art LLMs, such as GPT-4V, in understanding and executing complex instructions, extracting valuable insights from vast amounts of data, and facilitating knowledge sharing. We also delve into the transformative potential of LLMs in reshaping manufacturing education, automating coding processes, enhancing robot control systems, and enabling the creation of immersive, data-rich virtual environments through the industrial metaverse. By highlighting the practical applications and emerging use cases of LLMs in manufacturing, this paper aims to provide a valuable resource for professionals, researchers, and decision-makers seeking to harness the power of these technologies to address real-world challenges, drive operational excellence, and unlock sustainable growth in an increasingly competitive landscape.
Related papers
- Exploring the Roles of Large Language Models in Reshaping Transportation Systems: A Survey, Framework, and Roadmap [51.198001060683296]
Large Language Models (LLMs) offer transformative potential to address transportation challenges.
This survey first presents LLM4TR, a novel conceptual framework that systematically categorizes the roles of LLMs in transportation.
For each role, our review spans diverse applications, from traffic prediction and autonomous driving to safety analytics and urban mobility optimization.
arXiv Detail & Related papers (2025-03-27T11:56:27Z) - Improving Retrospective Language Agents via Joint Policy Gradient Optimization [57.35348425288859]
RetroAct is a framework that jointly optimize both task-planning and self-reflective evolution capabilities in language agents.
We develop a two-stage joint optimization process that integrates imitation learning and reinforcement learning.
We conduct extensive experiments across various testing environments, demonstrating RetroAct has substantial improvements in task performance and decision-making processes.
arXiv Detail & Related papers (2025-03-03T12:54:54Z) - Advancing Generative Artificial Intelligence and Large Language Models for Demand Side Management with Internet of Electric Vehicles [52.43886862287498]
This paper explores the integration of large language models (LLMs) into energy management.
We propose an innovative solution that enhances LLMs with retrieval-augmented generation for automatic problem formulation, code generation, and customizing optimization.
We present a case study to demonstrate the effectiveness of our proposed solution in charging scheduling and optimization for electric vehicles.
arXiv Detail & Related papers (2025-01-26T14:31:03Z) - The Potential of Large Language Models in Supply Chain Management: Advancing Decision-Making, Efficiency, and Innovation [0.5497663232622965]
The integration of large language models (LLMs) into supply chain management (SCM) is revolutionizing the industry.
This white paper explores the transformative impact of LLMs on various SCM functions, including demand forecasting, inventory management, supplier relationship management, and logistics optimization.
Ethical considerations, including bias mitigation and data protection, are taken into account to ensure fair and transparent AI practices.
arXiv Detail & Related papers (2025-01-26T05:41:50Z) - Sustainable Digitalization of Business with Multi-Agent RAG and LLM [1.6385815610837167]
This research aims to explore the integration of Large Language Models (LLMs) with Retrieval-Augmented Generation (RAG)
We propose a sustainable business solution using pre-existing LLMs that can work with diverse datasets.
arXiv Detail & Related papers (2025-01-06T08:14:23Z) - A Survey: Collaborative Hardware and Software Design in the Era of Large Language Models [16.250856588632637]
The rapid development of large language models (LLMs) has significantly transformed the field of artificial intelligence.
These models are increasingly integrated into diverse applications, impacting both research and industry.
This paper surveys hardware and software co-design approaches specifically tailored to address the unique characteristics and constraints of large language models.
arXiv Detail & Related papers (2024-10-08T21:46:52Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - Generative AI Application for Building Industry [10.154329382433213]
This paper investigates the transformative potential of generative AI technologies, particularly large language models (LLMs) in the building industry.
The research highlights how LLMs can automate labor-intensive processes, significantly improving efficiency, accuracy, and safety in building practices.
arXiv Detail & Related papers (2024-10-01T21:59:08Z) - Creating a Gen-AI based Track and Trace Assistant MVP (SuperTracy) for PostNL [0.0]
PostNL, the biggest parcel and E-commerce corporation of the Netherlands wants to use generative AI to enhance the communication around track and trace of parcels.
During the internship a Minimal Viable Product (MVP) is created to showcase the value of using generative AI technologies.
MVP successfully implemented a multi-agent open-source LLM system, called SuperTracy.
arXiv Detail & Related papers (2024-09-04T13:49:19Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
Multimodal Large Language Models (MLLMs) address the complexities of real-world applications far beyond the capabilities of single-modality systems.
This paper systematically sorts out the applications of MLLM in multimodal tasks such as natural language, vision, and audio.
arXiv Detail & Related papers (2024-08-02T15:14:53Z) - ORLM: A Customizable Framework in Training Large Models for Automated Optimization Modeling [15.67321902882617]
We propose a viable path for training open-source LLMs capable of optimization modeling and developing solver codes.
This work also introduces IndustryOR, the first industrial benchmark for evaluating LLMs in solving practical OR problems.
arXiv Detail & Related papers (2024-05-28T01:55:35Z) - A Survey on Self-Evolution of Large Language Models [116.54238664264928]
Large language models (LLMs) have significantly advanced in various fields and intelligent agent applications.
To address this issue, self-evolution approaches that enable LLMs to autonomously acquire, refine, and learn from experiences generated by the model itself are rapidly growing.
arXiv Detail & Related papers (2024-04-22T17:43:23Z) - Machine Learning Meets Advanced Robotic Manipulation [48.6221343014126]
The paper reviews cutting edge technologies and recent trends on machine learning methods applied to real-world manipulation tasks.
The rest of the paper is devoted to ML applications in different domains such as industry, healthcare, agriculture, space, military, and search and rescue.
arXiv Detail & Related papers (2023-09-22T01:06:32Z) - Artificial Intelligence-Driven Customized Manufacturing Factory: Key
Technologies, Applications, and Challenges [6.730602129752864]
This paper focuses on the implementation of AI in customized manufacturing (CM)
Details of intelligent manufacturing devices, intelligent information interaction, and the construction of a flexible manufacturing line are showcased.
The AI-enabled technologies in a customized smart factory are validated with a case study of customized packaging.
arXiv Detail & Related papers (2021-08-07T07:14:36Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes.
We elaborate on the utilization of a Genetic Algorithm and Neural Network to propose an intelligent feature selection algorithm.
arXiv Detail & Related papers (2020-08-29T14:57:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.