Large Language Models for Manufacturing
- URL: http://arxiv.org/abs/2410.21418v1
- Date: Mon, 28 Oct 2024 18:13:47 GMT
- Title: Large Language Models for Manufacturing
- Authors: Yiwei Li, Huaqin Zhao, Hanqi Jiang, Yi Pan, Zhengliang Liu, Zihao Wu, Peng Shu, Jie Tian, Tianze Yang, Shaochen Xu, Yanjun Lyu, Parker Blenk, Jacob Pence, Jason Rupram, Eliza Banu, Ninghao Liu, Linbing Wang, Wenzhan Song, Xiaoming Zhai, Kenan Song, Dajiang Zhu, Beiwen Li, Xianqiao Wang, Tianming Liu,
- Abstract summary: Large Language Models (LLMs) have the potential to transform manufacturing industry, offering new opportunities to optimize processes, improve efficiency, and drive innovation.
This paper focuses on the integration of LLMs into the manufacturing domain, focusing on their potential to automate and enhance various aspects of manufacturing.
- Score: 41.12098478080648
- License:
- Abstract: The rapid advances in Large Language Models (LLMs) have the potential to transform manufacturing industry, offering new opportunities to optimize processes, improve efficiency, and drive innovation. This paper provides a comprehensive exploration of the integration of LLMs into the manufacturing domain, focusing on their potential to automate and enhance various aspects of manufacturing, from product design and development to quality control, supply chain optimization, and talent management. Through extensive evaluations across multiple manufacturing tasks, we demonstrate the remarkable capabilities of state-of-the-art LLMs, such as GPT-4V, in understanding and executing complex instructions, extracting valuable insights from vast amounts of data, and facilitating knowledge sharing. We also delve into the transformative potential of LLMs in reshaping manufacturing education, automating coding processes, enhancing robot control systems, and enabling the creation of immersive, data-rich virtual environments through the industrial metaverse. By highlighting the practical applications and emerging use cases of LLMs in manufacturing, this paper aims to provide a valuable resource for professionals, researchers, and decision-makers seeking to harness the power of these technologies to address real-world challenges, drive operational excellence, and unlock sustainable growth in an increasingly competitive landscape.
Related papers
- A Survey: Collaborative Hardware and Software Design in the Era of Large Language Models [16.250856588632637]
The rapid development of large language models (LLMs) has significantly transformed the field of artificial intelligence.
These models are increasingly integrated into diverse applications, impacting both research and industry.
This paper surveys hardware and software co-design approaches specifically tailored to address the unique characteristics and constraints of large language models.
arXiv Detail & Related papers (2024-10-08T21:46:52Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - Generative AI Application for Building Industry [10.154329382433213]
This paper investigates the transformative potential of generative AI technologies, particularly large language models (LLMs) in the building industry.
The research highlights how LLMs can automate labor-intensive processes, significantly improving efficiency, accuracy, and safety in building practices.
arXiv Detail & Related papers (2024-10-01T21:59:08Z) - Creating a Gen-AI based Track and Trace Assistant MVP (SuperTracy) for PostNL [0.0]
PostNL, the biggest parcel and E-commerce corporation of the Netherlands wants to use generative AI to enhance the communication around track and trace of parcels.
During the internship a Minimal Viable Product (MVP) is created to showcase the value of using generative AI technologies.
MVP successfully implemented a multi-agent open-source LLM system, called SuperTracy.
arXiv Detail & Related papers (2024-09-04T13:49:19Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
Multimodal Large Language Models (MLLMs) address the complexities of real-world applications far beyond the capabilities of single-modality systems.
This paper systematically sorts out the applications of MLLM in multimodal tasks such as natural language, vision, and audio.
arXiv Detail & Related papers (2024-08-02T15:14:53Z) - A Survey on Self-Evolution of Large Language Models [116.54238664264928]
Large language models (LLMs) have significantly advanced in various fields and intelligent agent applications.
To address this issue, self-evolution approaches that enable LLMs to autonomously acquire, refine, and learn from experiences generated by the model itself are rapidly growing.
arXiv Detail & Related papers (2024-04-22T17:43:23Z) - Machine Learning Meets Advanced Robotic Manipulation [48.6221343014126]
The paper reviews cutting edge technologies and recent trends on machine learning methods applied to real-world manipulation tasks.
The rest of the paper is devoted to ML applications in different domains such as industry, healthcare, agriculture, space, military, and search and rescue.
arXiv Detail & Related papers (2023-09-22T01:06:32Z) - Artificial Intelligence-Driven Customized Manufacturing Factory: Key
Technologies, Applications, and Challenges [6.730602129752864]
This paper focuses on the implementation of AI in customized manufacturing (CM)
Details of intelligent manufacturing devices, intelligent information interaction, and the construction of a flexible manufacturing line are showcased.
The AI-enabled technologies in a customized smart factory are validated with a case study of customized packaging.
arXiv Detail & Related papers (2021-08-07T07:14:36Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes.
We elaborate on the utilization of a Genetic Algorithm and Neural Network to propose an intelligent feature selection algorithm.
arXiv Detail & Related papers (2020-08-29T14:57:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.