Estimating Causal Effects of Text Interventions Leveraging LLMs
- URL: http://arxiv.org/abs/2410.21474v1
- Date: Mon, 28 Oct 2024 19:19:35 GMT
- Title: Estimating Causal Effects of Text Interventions Leveraging LLMs
- Authors: Siyi Guo, Myrl G. Marmarelis, Fred Morstatter, Kristina Lerman,
- Abstract summary: This paper proposes a novel approach to estimate causal effects using text transformations facilitated by large language models (LLMs)
Unlike existing methods, our approach accommodates arbitrary textual interventions and leverages text-level classifiers with domain adaptation ability to produce robust effect estimates against domain shifts.
This flexibility in handling various text interventions is a key advancement in causal estimation for textual data, offering opportunities to better understand human behaviors and develop effective policies within social systems.
- Score: 7.2937547395453315
- License:
- Abstract: Quantifying the effect of textual interventions in social systems, such as reducing anger in social media posts to see its impact on engagement, poses significant challenges. Direct interventions on real-world systems are often infeasible, necessitating reliance on observational data. Traditional causal inference methods, typically designed for binary or discrete treatments, are inadequate for handling the complex, high-dimensional nature of textual data. This paper addresses these challenges by proposing a novel approach, CausalDANN, to estimate causal effects using text transformations facilitated by large language models (LLMs). Unlike existing methods, our approach accommodates arbitrary textual interventions and leverages text-level classifiers with domain adaptation ability to produce robust effect estimates against domain shifts, even when only the control group is observed. This flexibility in handling various text interventions is a key advancement in causal estimation for textual data, offering opportunities to better understand human behaviors and develop effective policies within social systems.
Related papers
- DAG-aware Transformer for Causal Effect Estimation [0.8192907805418583]
Causal inference is a critical task across fields such as healthcare, economics, and the social sciences.
In this paper, we present a novel transformer-based method for causal inference that overcomes these challenges.
The core innovation of our model lies in its integration of causal Directed Acyclic Graphs (DAGs) directly into the attention mechanism.
arXiv Detail & Related papers (2024-10-13T23:17:58Z) - Reduced-Rank Multi-objective Policy Learning and Optimization [57.978477569678844]
In practice, causal researchers do not have a single outcome in mind a priori.
In government-assisted social benefit programs, policymakers collect many outcomes to understand the multidimensional nature of poverty.
We present a data-driven dimensionality-reduction methodology for multiple outcomes in the context of optimal policy learning.
arXiv Detail & Related papers (2024-04-29T08:16:30Z) - Causal Inference for Human-Language Model Collaboration [24.096991077437146]
We develop CausalCollab, an algorithm designed to estimate the ISE of various interaction strategies in dynamic human-LM collaborations.
Our empirical investigations across three distinct human-LM collaboration scenarios reveal that CausalCollab effectively reduces confounding.
arXiv Detail & Related papers (2024-03-30T01:08:25Z) - Integrating Active Learning in Causal Inference with Interference: A
Novel Approach in Online Experiments [5.488412825534217]
We introduce an active learning approach: Active Learning in Causal Inference with Interference (ACI)
ACI uses Gaussian process to flexibly model the direct and spillover treatment effects as a function of a continuous measure of neighbors' treatment assignment.
We demonstrate its feasibility in achieving accurate effects estimations with reduced data requirements.
arXiv Detail & Related papers (2024-02-20T04:13:59Z) - Text-Transport: Toward Learning Causal Effects of Natural Language [46.75318356800048]
We introduce Text-Transport, a method for estimation of causal effects from natural language under any text distribution.
We use Text-Transport to study a realistic setting--hate speech on social media--in which causal effects do shift significantly between text domains.
arXiv Detail & Related papers (2023-10-31T17:56:51Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSense is a framework that induces a belief-centered graph on top of an existent social network, along with graph-based propagation to capture social dynamics.
Our method surpasses existing state-of-the-art in experimental evaluations for both zero-shot and supervised settings.
arXiv Detail & Related papers (2023-10-20T06:17:02Z) - Re-mine, Learn and Reason: Exploring the Cross-modal Semantic
Correlations for Language-guided HOI detection [57.13665112065285]
Human-Object Interaction (HOI) detection is a challenging computer vision task.
We present a framework that enhances HOI detection by incorporating structured text knowledge.
arXiv Detail & Related papers (2023-07-25T14:20:52Z) - Eliciting the Double-edged Impact of Digitalisation: a Case Study in
Rural Areas [1.8707139489039097]
This paper reports a case study about the impact of digitalisation in remote mountain areas, in the context of a system for ordinary land management and hydro-geological risk control.
We highlight the higher stress due to the excess of connectivity, the partial reduction of decision-making abilities, and the risk of marginalisation for certain types of stakeholders.
Our study contributes to the literature with: a set of impacts specific to the case, which can apply to similar contexts; an effective approach for impact elicitation; and a list of lessons learned from the experience.
arXiv Detail & Related papers (2023-06-08T10:01:35Z) - CausalBench: A Large-scale Benchmark for Network Inference from
Single-cell Perturbation Data [61.088705993848606]
We introduce CausalBench, a benchmark suite for evaluating causal inference methods on real-world interventional data.
CaulBench incorporates biologically-motivated performance metrics, including new distribution-based interventional metrics.
arXiv Detail & Related papers (2022-10-31T13:04:07Z) - Social Influence Dialogue Systems: A Scoping Survey of the Efforts
Towards Influence Capabilities of Dialogue Systems [50.57882213439553]
Social influence dialogue systems are capable of persuasion, negotiation, and therapy.
There exists no formal definition or category for dialogue systems with these skills.
This study serves as a comprehensive reference for social influence dialogue systems to inspire more dedicated research and discussion in this emerging area.
arXiv Detail & Related papers (2022-10-11T17:57:23Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
We propose a novel Emotion Recognition Network (IERN) to alleviate the negative effects brought by the dataset bias.
A series of designed tests validate the effectiveness of IERN, and experiments on three emotion benchmarks demonstrate that IERN outperforms other state-of-the-art approaches.
arXiv Detail & Related papers (2021-07-26T10:40:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.