論文の概要: Efficient Training of Sparse Autoencoders for Large Language Models via Layer Groups
- arxiv url: http://arxiv.org/abs/2410.21508v1
- Date: Mon, 28 Oct 2024 20:23:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:42:37.365184
- Title: Efficient Training of Sparse Autoencoders for Large Language Models via Layer Groups
- Title(参考訳): 層群を用いた大規模言語モデルのためのスパースオートエンコーダの効率的な訓練
- Authors: Davide Ghilardi, Federico Belotti, Marco Molinari,
- Abstract要約: 本研究では,各層ごとにトレーニングされたSAEの数を,各層ごとに1つに減らした新たなトレーニング戦略を提案する。
Pythia 160Mの実験結果から,下流タスクの再現性や性能を損なうことなく,最大6倍の高速化を実現した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Sparse AutoEnocders (SAEs) have recently been employed as an unsupervised approach for understanding the inner workings of Large Language Models (LLMs). They reconstruct the model's activations with a sparse linear combination of interpretable features. However, training SAEs is computationally intensive, especially as models grow in size and complexity. To address this challenge, we propose a novel training strategy that reduces the number of trained SAEs from one per layer to one for a given group of contiguous layers. Our experimental results on Pythia 160M highlight a speedup of up to 6x without compromising the reconstruction quality and performance on downstream tasks. Therefore, layer clustering presents an efficient approach to train SAEs in modern LLMs.
- Abstract(参考訳): Sparse AutoEnocders (SAEs) は、最近、Large Language Models (LLMs) の内部動作を理解するための教師なしのアプローチとして採用されている。
彼らは、解釈可能な特徴の疎線型結合でモデルのアクティベーションを再構築する。
しかし、SAEsのトレーニングは、特にモデルのサイズと複雑さが大きくなるにつれて、計算集約的である。
この課題に対処するために、各層ごとにトレーニングされたSAEの数を1層から1層に減らした新しいトレーニング戦略を提案する。
Pythia 160Mの実験結果から,下流タスクの再現性や性能を損なうことなく,最大6倍の高速化を実現した。
したがって, 階層クラスタリングは, 現代のLCMにおけるSAEの訓練に有効な手法である。
関連論文リスト
- LESA: Learnable LLM Layer Scaling-Up [57.0510934286449]
LLM(Large Language Models)をスクラッチからトレーニングするには膨大な計算資源が必要であるため、非常に高価である。
モデルスケーリングアップは、より小さなモデルのパラメータを活用してより大きなモデルを作成することで、有望なソリューションを提供する。
深度スケールアップのための新しい学習方法である textbfLESA を提案する。
論文 参考訳(メタデータ) (2025-02-19T14:58:48Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
本稿では,事前学習したFFN層を計算ブロックに分割することで,分散化を実現するDSMoEを提案する。
我々は,Sigmoid アクティベーションとストレートスルー推定器を用いた適応型エキスパートルーティングを実装し,トークンがモデル知識の様々な側面に柔軟にアクセスできるようにする。
LLaMAモデルを用いた実験により、DSMoEは既存のプルーニング法やMoE法に比べて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-02-18T02:37:26Z) - Scaling Laws for Upcycling Mixture-of-Experts Language Models [17.796361238003403]
大規模言語モデル(LLM)の事前トレーニングはリソース集約的であり、ハイエンドのGPUクラスタでも数ヶ月のトレーニング時間を必要とすることが多い。
そのような計算要求を緩和する2つのアプローチがある: より小さなモデルを再利用して、より大きなモデルをトレーニングする(アップサイクル)、そして、Mix-of-experts (MoE)のような計算効率の良いモデルを訓練する。
論文 参考訳(メタデータ) (2025-02-05T09:11:13Z) - Pruning Large Language Models with Semi-Structural Adaptive Sparse Training [17.381160429641316]
Adaptive Sparse Trainer (AST)は、半構造化スパースモデルに適した、新規で効率的なリトレーニングフレームワークである。
ASTは、密度と2:4の半構造化スパースモデルのパープレキシティとゼロショット精度のギャップをそれぞれ0.6と1.16%に削減する。
論文 参考訳(メタデータ) (2024-07-30T06:33:44Z) - SPP: Sparsity-Preserved Parameter-Efficient Fine-Tuning for Large Language Models [53.638791265113625]
空間保存型大規模言語モデルのための効率的な微調整法
コードはhttps://github.com/Lucky-Lance/SPP.comで公開される。
論文 参考訳(メタデータ) (2024-05-25T04:55:27Z) - Why Lift so Heavy? Slimming Large Language Models by Cutting Off the
Layers [2.1165011830664673]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクに対処する際、優れた能力を持っている。
これらのモデルの厳密なサイズは、ストレージ、トレーニング、推論において、層積み重ねによる数十億のパラメータを含むため、課題を生じさせる。
レイヤが少なくても、LLMは、特にテキスト分類タスクのプロンプトベースの微調整において、類似またはより良いパフォーマンスレベルを維持していることを示す。
論文 参考訳(メタデータ) (2024-02-18T20:47:10Z) - BLoad: Enhancing Neural Network Training with Efficient Sequential Data Handling [8.859850475075238]
オーバヘッドを最小限に抑えながら、異なるサイズのシーケンスに対して効率的な分散データ並列トレーニングを可能にする新しいトレーニング手法を提案する。
このスキームを使用することで、単一のフレームを削除することなく、パディング量を100ドル以上削減することができ、結果として、トレーニング時間とリコールの両方で全体的なパフォーマンスが向上しました。
論文 参考訳(メタデータ) (2023-10-16T23:14:56Z) - Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs [67.38165028487242]
そこで我々は,DSnoT(Dynamic Sparse No Training, 動的スパース・ノー・トレーニング)を導入した。
動的スパーストレーニングにインスパイアされたDSnoTは、密度とスパースLLM間の再構成誤差を最小限に抑える。
本稿は, LLMのスパースを, 効率的なトレーニング自由な方法で微調整し, 新たな会場をオープンして, LLMの空間性に大きな可能性を拡大する方法について, 新たな知見を提供する。
論文 参考訳(メタデータ) (2023-10-13T07:38:52Z) - Sheared LLaMA: Accelerating Language Model Pre-training via Structured Pruning [52.29522018586365]
我々は,事前訓練された大規模モデルからより小型のLCMを開発するための効果的な方法として構造化プルーニングについて検討した。
提案手法では,(1)階層,頭部,中間および隠蔽次元をエンド・ツー・エンドに除去することで,より大きなモデルを特定のターゲット形状にプルーニングするターゲット構造化プルーニングと,(2)各トレーニングバッチにおけるサンプルデータの構成を,異なるドメイン間での損失に基づいて動的に更新する動的バッチローディングという2つの重要な手法を用いる。
論文 参考訳(メタデータ) (2023-10-10T15:13:30Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。