論文の概要: Diagnosis of Knee Osteoarthritis Using Bioimpedance and Deep Learning
- arxiv url: http://arxiv.org/abs/2410.21512v1
- Date: Mon, 28 Oct 2024 20:31:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:38:49.375024
- Title: Diagnosis of Knee Osteoarthritis Using Bioimpedance and Deep Learning
- Title(参考訳): 生体インピーダンスと深部学習を用いた変形性膝関節症の診断
- Authors: Jamal Al-Nabulsi, Mohammad Al-Sayed Ahmad, Baraa Hasaneiah, Fayhaa AlZoubi,
- Abstract要約: 早期の変形性膝関節症(OA)は症状の管理と関節損傷の予防に重要である。
本稿では,正確なハードウェアとディープラーニングを組み合わせたバイオインダプタンスに基づく診断ツールを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Diagnosing knee osteoarthritis (OA) early is crucial for managing symptoms and preventing further joint damage, ultimately improving patient outcomes and quality of life. In this paper, a bioimpedance-based diagnostic tool that combines precise hardware and deep learning for effective non-invasive diagnosis is proposed. system features a relay-based circuit and strategically placed electrodes to capture comprehensive bioimpedance data. The data is processed by a neural network model, which has been optimized using convolutional layers, dropout regularization, and the Adam optimizer. This approach achieves a 98% test accuracy, making it a promising tool for detecting knee osteoarthritis musculoskeletal disorders.
- Abstract(参考訳): 早期に変形性膝関節症(OA)を診断することは、症状を管理し、さらなる関節損傷を予防し、最終的には患者の成果と生活の質を改善するために重要である。
本稿では,正確なハードウェアとディープラーニングを組み合わせたバイオインダプタンスに基づく診断ツールを提案する。
システムはリレーベースの回路と戦略的に配置された電極を備え、包括的な生体インピーダンスデータをキャプチャする。
データは、畳み込みレイヤ、ドロップアウト正規化、Adamオプティマイザを使用して最適化されたニューラルネットワークモデルによって処理される。
このアプローチは98%の精度を達成し, 変形性膝関節症の診断に有効である。
関連論文リスト
- MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning for Healthcare Copilot [47.77948063906033]
Retrieval-augmented Generation (RAG)は、プライバシーに敏感な電子健康記録を検索するのに適した手法である。
本稿では,医療領域に対する知識グラフ(KG)により強化されたRAGモデルであるMedRAGを提案する。
MedRAGはより具体的な診断の洞察を提供し、誤診率の低減に最先端のモデルを上回っている。
論文 参考訳(メタデータ) (2025-02-06T12:27:35Z) - MINDSETS: Multi-omics Integration with Neuroimaging for Dementia Subtyping and Effective Temporal Study [0.7751705157998379]
アルツハイマー病(AD)と血管性認知症(VaD)は最も多い認知症である。
本稿では、ADとVaDを正確に区別する革新的なマルチオミクス手法を提案し、89.25%の精度で診断を行う。
論文 参考訳(メタデータ) (2024-11-06T10:13:28Z) - A Hybrid Deep Spatio-Temporal Attention-Based Model for Parkinson's
Disease Diagnosis Using Resting State EEG Signals [8.526741765074677]
本研究では,脳波信号を用いたパーキンソン病(PD)の深層学習モデルを提案する。
このモデルは、畳み込みニューラルネットワーク(CNN)、双方向ゲートリカレントユニット(Bi-GRU)、アテンションメカニズムからなるハイブリッドモデルを用いて設計されている。
その結果,提案モデルでは,トレーニングとホールドアウトデータセットの両方でPDを高精度に診断できることが示唆された。
論文 参考訳(メタデータ) (2023-08-14T20:06:19Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - A multimodal method based on cross-attention and convolution for
postoperative infection diagnosis [0.0]
術後感染診断は重篤な合併症であり,高い診断上の課題となっている。
X線検査は、疑わしいPJI患者の画像検査である。
本研究では,自己教師型マスク付きオートエンコーダ事前学習戦略とマルチモーダル核融合診断ネットワークMED-NVCを提案する。
論文 参考訳(メタデータ) (2023-05-23T15:08:56Z) - A marker-less human motion analysis system for motion-based biomarker
discovery in knee disorders [60.99112047564336]
NHSは低リスクの全ての患者に会うのが難しくなっているが、これはOA患者に限らない。
膝関節疾患の診断と治療経過のモニタリングのためのバイオマーカー自動同定法を提案する。
論文 参考訳(メタデータ) (2023-04-26T16:47:42Z) - Confidence-Driven Deep Learning Framework for Early Detection of Knee Osteoarthritis [8.193689534916988]
膝関節症 (KOA) は筋骨格障害の1つで、運動量や生活の質に深刻な影響を及ぼす。
我々は,KL-0およびKL-2ステージの識別に焦点をあてた,早期のKOA検出のための信頼性駆動型ディープラーニングフレームワークを提案する。
実験により,提案フレームワークは専門家の放射線学者に匹敵する,競争精度,感度,特異性を達成できることが示された。
論文 参考訳(メタデータ) (2023-03-23T11:57:50Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
音声ベースの自動ADスクリーニングシステムは、他の臨床スクリーニング技術に代わる非侵襲的でスケーラブルな代替手段を提供する。
専門的なデータの収集は、そのようなシステムを開発する際に、モデル選択と特徴学習の両方に不確実性をもたらす。
本稿では,BERT と Roberta の事前学習したテキストエンコーダのドメイン微調整の堅牢性向上のための特徴とモデルの組み合わせ手法について検討する。
論文 参考訳(メタデータ) (2022-06-28T05:09:01Z) - Review of Machine Learning Algorithms for Brain Stroke Diagnosis and
Prognosis by EEG Analysis [50.591267188664666]
ストローク(Strokes)は、アメリカ合衆国の成人障害の主要な原因である。
脳-コンピュータインタフェース(Brain-Computer Interfaces、BCI)は、患者の神経経路の回復または電子補綴器との効果的なコミュニケーションを支援する。
さまざまな機械学習技術とアルゴリズムをBCI技術と組み合わせることで、脳卒中治療にBCIを使うことは、有望で急速に拡大する分野であることを示している。
論文 参考訳(メタデータ) (2020-08-06T19:50:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。