論文の概要: A multimodal method based on cross-attention and convolution for
postoperative infection diagnosis
- arxiv url: http://arxiv.org/abs/2305.14142v1
- Date: Tue, 23 May 2023 15:08:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-24 15:23:21.872521
- Title: A multimodal method based on cross-attention and convolution for
postoperative infection diagnosis
- Title(参考訳): 術後感染診断におけるクロスアテンションと畳み込みに基づくマルチモーダル法
- Authors: Xianjie Liu, Hongwei Shi
- Abstract要約: 術後感染診断は重篤な合併症であり,高い診断上の課題となっている。
X線検査は、疑わしいPJI患者の画像検査である。
本研究では,自己教師型マスク付きオートエンコーダ事前学習戦略とマルチモーダル核融合診断ネットワークMED-NVCを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Postoperative infection diagnosis is a common and serious complication that
generally poses a high diagnostic challenge. This study focuses on PJI, a type
of postoperative infection. X-ray examination is an imaging examination for
suspected PJI patients that can evaluate joint prostheses and adjacent tissues,
and detect the cause of pain. Laboratory examination data has high sensitivity
and specificity and has significant potential in PJI diagnosis. In this study,
we proposed a self-supervised masked autoencoder pre-training strategy and a
multimodal fusion diagnostic network MED-NVC, which effectively implements the
interaction between two modal features through the feature fusion network of
CrossAttention. We tested our proposed method on our collected PJI dataset and
evaluated its performance and feasibility through comparison and ablation
experiments. The results showed that our method achieved an ACC of 94.71% and
an AUC of 98.22%, which is better than the latest method and also reduces the
number of parameters. Our proposed method has the potential to provide
clinicians with a powerful tool for enhancing accuracy and efficiency.
- Abstract(参考訳): 術後感染症の診断は一般的で重篤な合併症であり、一般に高い診断課題を引き起こす。
本研究は術後感染症の一種であるPJIに焦点を当てた。
X線検査は、関節補綴と隣接する組織を評価し、痛みの原因を検出するPJI患者の画像検査である。
検査データは感度と特異性が高く,PJI診断に有意な可能性を秘めている。
本研究では,CrossAttentionの機能融合ネットワークを通じて,2つのモーダル特徴間の相互作用を効果的に実装する,自己教師型マスク付きオートエンコーダ事前学習戦略とマルチモーダル融合診断ネットワークMED-NVCを提案する。
提案手法を収集したPJIデータセット上で検証し,比較およびアブレーション実験によりその性能と実現可能性を評価した。
その結果,accは94.71%,aucは98.22%となり,最新の手法よりも優れ,パラメータ数も減少した。
提案手法は,臨床医に精度と効率を向上させる強力なツールを提供する可能性がある。
関連論文リスト
- EndoOOD: Uncertainty-aware Out-of-distribution Detection in Capsule
Endoscopy Diagnosis [11.82953216903558]
ワイヤレスカプセル内視鏡(Wireless capsule endoscopy, WCE)は、消化管(GI)の可視化を可能にする非侵襲的診断法である。
深層学習に基づく手法は、WCEデータを用いた疾患スクリーニングの有効性を示した。
既存のカプセル内視鏡分類法は、主に事前に定義されたカテゴリーに依存している。
論文 参考訳(メタデータ) (2024-02-18T06:54:51Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - Enabling Collaborative Clinical Diagnosis of Infectious Keratitis by
Integrating Expert Knowledge and Interpretable Data-driven Intelligence [28.144658552047975]
感染性角膜炎(IK)の診断における知識誘導診断モデル(KGDM)の性能,解釈可能性,臨床的有用性について検討した。
AIベースのバイオマーカーの診断確率比(DOR)は3.011から35.233の範囲で有効である。
コラボレーションの参加者は、人間とAIの両方を上回るパフォーマンスを達成した。
論文 参考訳(メタデータ) (2024-01-14T02:10:54Z) - Hypergraph Convolutional Networks for Fine-grained ICU Patient
Similarity Analysis and Risk Prediction [15.06049250330114]
集中治療ユニット(ICU、Intensive Care Unit)は、重篤な患者を認め、継続的な監視と治療を提供する病院の最も重要な部分の1つである。
臨床意思決定における医療従事者を支援するために,様々な患者結果予測手法が試みられている。
論文 参考訳(メタデータ) (2023-08-24T05:26:56Z) - PHE-SICH-CT-IDS: A Benchmark CT Image Dataset for Evaluation Semantic
Segmentation, Object Detection and Radiomic Feature Extraction of
Perihematomal Edema in Spontaneous Intracerebral Hemorrhage [2.602118060856794]
脳内出血は、世界で最も死亡率が高く、予後不良な疾患の1つである。
PHE-SICH-CT-IDSと命名したCTデータセットを,脳内自然出血に用いた。
論文 参考訳(メタデータ) (2023-08-21T07:18:51Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - HGT: A Hierarchical GCN-Based Transformer for Multimodal Periprosthetic
Joint Infection Diagnosis Using CT Images and Text [0.0]
補綴関節感染症(PJI)は重篤な合併症である。
現在,CT画像とPJIの数値テキストデータを組み合わせた統一診断基準が確立されていない。
本研究では,ディープラーニングとマルチモーダル技術に基づく診断手法であるHGTを紹介する。
論文 参考訳(メタデータ) (2023-05-29T11:25:57Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
我々は、集中治療室入院の必要性を予測するために、人口統計、バイタルサイン、実験室の所見から、肺不透明度の放射能と非画像の特徴を組み合わせる。
また, 地域性肺炎を含む他の肺疾患にも適用できるが, 地域性肺炎に限らない。
論文 参考訳(メタデータ) (2020-07-20T19:08:50Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
最近、コロナウイルス病2019(COVID-19)の流行は世界中で急速に広まっている。
多くの患者と医師の重労働のために、機械学習アルゴリズムによるコンピュータ支援診断が緊急に必要である。
本研究では,CT画像から抽出した一連の特徴を用いて,COVID-19の診断を行うことを提案する。
論文 参考訳(メタデータ) (2020-05-06T15:19:15Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
新型コロナウイルス感染症(COVID-19)は世界中で急速に広がり、公衆衛生や経済に大きな影響を及ぼしている。
新型コロナウイルスによる肺感染症を効果的に定量化する研究はいまだにない。
複数の新型コロナウイルス感染症領域の自動セグメンテーションのための新しいディープラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-04-12T16:24:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。