論文の概要: A Confident Labelling Strategy Based on Deep Learning for Improving
Early Detection of Knee OsteoArthritis
- arxiv url: http://arxiv.org/abs/2303.13203v1
- Date: Thu, 23 Mar 2023 11:57:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-24 14:37:55.038820
- Title: A Confident Labelling Strategy Based on Deep Learning for Improving
Early Detection of Knee OsteoArthritis
- Title(参考訳): 深層学習に基づく膝関節症早期発見のための信頼性評価戦略
- Authors: Zhe Wang, Aladine Chetouani, Rachid Jennane
- Abstract要約: Knee osteoArthritis (KOA) は高齢者の運動能力低下を引き起こす筋骨格障害である。
本稿では,新しいシームズネットワークを提案するとともに,KOAの早期検出のためのハイブリッド損失戦略を提案する。
- 参考スコア(独自算出の注目度): 9.400820679110147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knee OsteoArthritis (KOA) is a prevalent musculoskeletal disorder that causes
decreased mobility in seniors. The diagnosis provided by physicians is
subjective, however, as it relies on personal experience and the
semi-quantitative Kellgren-Lawrence (KL) scoring system. KOA has been
successfully diagnosed by Computer-Aided Diagnostic (CAD) systems that use deep
learning techniques like Convolutional Neural Networks (CNN). In this paper, we
propose a novel Siamese-based network, and we introduce a new hybrid loss
strategy for the early detection of KOA. The model extends the classical
Siamese network by integrating a collection of Global Average Pooling (GAP)
layers for feature extraction at each level. Then, to improve the
classification performance, a novel training strategy that partitions each
training batch into low-, medium- and high-confidence subsets, and a specific
hybrid loss function are used for each new label attributed to each sample. The
final loss function is then derived by combining the latter loss functions with
optimized weights. Our test results demonstrate that our proposed approach
significantly improves the detection performance.
- Abstract(参考訳): Knee osteoArthritis (KOA) は高齢者の運動能力低下を引き起こす筋骨格障害である。
医師による診断は、個人的経験と半定量的なKelgren-Lawrence(KL)スコアシステムに依存するため、主観的である。
koaは、畳み込みニューラルネットワーク(cnn)のようなディープラーニング技術を使用するcadシステムによって、診断に成功している。
本稿では,新しいシアーム系ネットワークを提案し,koaの早期検出のためのハイブリッド損失戦略を提案する。
このモデルは、各レベルの特徴抽出のためにグローバル平均プーリング(gap)層の集合を統合することによって、古典的なシャムネットワークを拡張する。
そして、分類性能を向上させるために、各トレーニングバッチを低、中、高信頼のサブセットに分割する新たなトレーニング戦略と、各サンプルに属する新しいラベルごとに特定のハイブリッド損失関数を用いる。
最終損失関数は、後者の損失関数と最適化された重みを組み合わせることで導出される。
実験の結果,提案手法は検出性能を大幅に向上することが示された。
関連論文リスト
- Hybrid Interpretable Deep Learning Framework for Skin Cancer Diagnosis: Integrating Radial Basis Function Networks with Explainable AI [1.1049608786515839]
皮膚がんは世界中で最も流行し、致命的な疾患の1つである。
本稿では,畳み込みニューラルネットワーク(CNN)とラジアル基底関数(RBF)ネットワークを統合するハイブリッドディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-24T19:19:02Z) - Fairness Evolution in Continual Learning for Medical Imaging [47.52603262576663]
医用画像の分類性能に関する連続学習戦略(CL)の行動について検討した。
我々は,リプレイ,フォーッティングなし学習(LwF),LwF,Pseudo-Label戦略を評価した。
LwF と Pseudo-Label は最適な分類性能を示すが、評価に公正度の測定値を含めると、Pseudo-Label がバイアスが少ないことは明らかである。
論文 参考訳(メタデータ) (2024-04-10T09:48:52Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
深層学習モデルは、自動的にMS病変を分節する約束を示しているが、正確な注釈付きデータの不足は、この分野の進歩を妨げている。
我々は,MS病変の不均衡分布とファジィ境界を考慮したDecoupled Hard Label Correction(DHLC)戦略を導入する。
また,集約型中央モデルを利用したCELC(Centrally Enhanced Label Correction)戦略も導入した。
論文 参考訳(メタデータ) (2023-08-31T00:36:10Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
クロスモダリティな医用画像合成をどう評価するかという問題は、ほとんど解明されていない。
本稿では,この課題の進展を促すため,新しい指標K-CROSSを提案する。
K-CROSSは、トレーニング済みのマルチモードセグメンテーションネットワークを使用して、病変の位置を予測する。
論文 参考訳(メタデータ) (2023-07-10T01:26:48Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Toward Robust Diagnosis: A Contour Attention Preserving Adversarial
Defense for COVID-19 Detection [10.953610196636784]
本稿では,肺腔エッジ抽出に基づく Contour Attention Preserving (CAP) 法を提案する。
実験結果から, 本手法は, 複数の対角防御および一般化タスクにおいて, 最先端の性能を実現することが示唆された。
論文 参考訳(メタデータ) (2022-11-30T08:01:23Z) - Coherence Learning using Keypoint-based Pooling Network for Accurately
Assessing Radiographic Knee Osteoarthritis [18.47511520060851]
膝関節症(英語: Knee osteoarthritis, OA)は、世界中の高齢者に影響を及ぼす一般的な変性関節疾患である。
現在臨床症状のある膝OAグレーティングシステムは観察対象であり、レイター間の相違に悩まされている。
本稿では,複合度と微粒度を同時に評価するためのコンピュータ支援型診断手法を提案する。
論文 参考訳(メタデータ) (2021-12-16T19:59:13Z) - Knee Osteoarthritis Severity Prediction using an Attentive Multi-Scale
Deep Convolutional Neural Network [8.950918531231158]
本稿では,KellgrenおよびLawrenceグレードの分類をX線から自動的に評価する,深層学習ベースのフレームワークであるOsteHRNetを提案する。
提案モデルでは,OAIデータセットのベースラインコホートにおいて,71.74%,0.311のMAEが最良である。
論文 参考訳(メタデータ) (2021-06-27T17:29:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。