LogSHIELD: A Graph-based Real-time Anomaly Detection Framework using Frequency Analysis
- URL: http://arxiv.org/abs/2410.21936v1
- Date: Tue, 29 Oct 2024 10:52:43 GMT
- Title: LogSHIELD: A Graph-based Real-time Anomaly Detection Framework using Frequency Analysis
- Authors: Krishna Chandra Roy, Qian Chen,
- Abstract summary: We present LogSHIELD, a graph-based anomaly detection model in host data.
It can detect stealthy and sophisticated attacks with over 98% average AUC and F1 scores.
It significantly improves throughput, achieves an average detection latency of 0.13 seconds, and outperforms state-of-the-art models in detection time.
- Score: 3.140349394142226
- License:
- Abstract: Anomaly-based cyber threat detection using deep learning is on a constant growth in popularity for novel cyber-attack detection and forensics. A robust, efficient, and real-time threat detector in a large-scale operational enterprise network requires high accuracy, high fidelity, and a high throughput model to detect malicious activities. Traditional anomaly-based detection models, however, suffer from high computational overhead and low detection accuracy, making them unsuitable for real-time threat detection. In this work, we propose LogSHIELD, a highly effective graph-based anomaly detection model in host data. We present a real-time threat detection approach using frequency-domain analysis of provenance graphs. To demonstrate the significance of graph-based frequency analysis we proposed two approaches. Approach-I uses a Graph Neural Network (GNN) LogGNN and approach-II performs frequency domain analysis on graph node samples for graph embedding. Both approaches use a statistical clustering algorithm for anomaly detection. The proposed models are evaluated using a large host log dataset consisting of 774M benign logs and 375K malware logs. LogSHIELD explores the provenance graph to extract contextual and causal relationships among logs, exposing abnormal activities. It can detect stealthy and sophisticated attacks with over 98% average AUC and F1 scores. It significantly improves throughput, achieves an average detection latency of 0.13 seconds, and outperforms state-of-the-art models in detection time.
Related papers
- Extreme Value Modelling of Feature Residuals for Anomaly Detection in Dynamic Graphs [14.8066991252587]
detecting anomalies in a temporal sequence of graphs can be applied to areas such as the detection of accidents in transport networks and cyber attacks in computer networks.
Existing methods for detecting abnormal graphs can suffer from multiple limitations, such as high false positive rates and difficulties with handling variable-sized graphs and non-trivial temporal dynamics.
We propose a technique where temporal dependencies are explicitly modelled via time series analysis of a large set of pertinent graph features, followed by using residuals to remove the dependencies.
arXiv Detail & Related papers (2024-10-08T05:00:53Z) - Explainable Online Unsupervised Anomaly Detection for Cyber-Physical Systems via Causal Discovery from Time Series [1.223779595809275]
State-of-the-art approaches based on deep learning via neural networks achieve outstanding performance at anomaly recognition.
We show that our method has higher training efficiency, outperforms the accuracy of state-of-the-art neural architectures.
arXiv Detail & Related papers (2024-04-15T15:42:12Z) - Marlin: Knowledge-Driven Analysis of Provenance Graphs for Efficient and Robust Detection of Cyber Attacks [32.77246634664381]
We introduce Marlin, which approaches cyber attack detection through real-time provenance graph alignment.
Marlin can process 137K events per second while accurately identifying 120 subgraphs with 31 confirmed attacks, along with only 1 false positive.
arXiv Detail & Related papers (2024-03-19T08:37:13Z) - Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
We propose a novel MultItask acTIve Graph Anomaly deTEction framework, namely MITIGATE.
By coupling node classification tasks, MITIGATE obtains the capability to detect out-of-distribution nodes without known anomalies.
Empirical studies on four datasets demonstrate that MITIGATE significantly outperforms the state-of-the-art methods for anomaly detection.
arXiv Detail & Related papers (2024-01-24T03:43:45Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
We introduce a novel framework called Anomaly-Denoised Autoencoders for Graph Anomaly Detection (ADA-GAD)
In the first stage, we design a learning-free anomaly-denoised augmentation method to generate graphs with reduced anomaly levels.
In the next stage, the decoders are retrained for detection on the original graph.
arXiv Detail & Related papers (2023-12-22T09:02:01Z) - Graph Neural Networks based Log Anomaly Detection and Explanation [19.66344385835598]
Event logs are widely used to record the status of high-tech systems.
Most existing log anomaly detection methods take a log event count matrix or log event sequences as input.
We propose a graph-based method for unsupervised log anomaly detection, dubbed Logs2Graphs.
arXiv Detail & Related papers (2023-07-02T09:38:43Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
We study model inversion attacks against Graph Neural Networks (GNNs)
In this paper, we present GraphMI to infer the private training graph data.
Our experimental results show that such defenses are not sufficiently effective and call for more advanced defenses against privacy attacks.
arXiv Detail & Related papers (2022-09-16T09:13:43Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
We propose an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs.
In particular, we first extract the $h$-hop enclosing subgraph centered on the target edge and propose the node labeling function to identify the role of each node in the subgraph.
Based on the extracted features, we utilize Gated recurrent units (GRUs) to capture the temporal information for anomaly detection.
arXiv Detail & Related papers (2020-05-15T09:17:08Z) - One-Class Graph Neural Networks for Anomaly Detection in Attributed
Networks [2.591494941326856]
One Class Graph Neural Network (OCGNN) is a one-class classification framework for graph anomaly detection.
OCGNN is designed to combine the powerful representation ability of Graph Neural Networks along with the classical one-class objective.
arXiv Detail & Related papers (2020-02-22T01:25:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.