Quantum conditional entropies from convex trace functionals
- URL: http://arxiv.org/abs/2410.21976v2
- Date: Tue, 15 Jul 2025 14:23:09 GMT
- Title: Quantum conditional entropies from convex trace functionals
- Authors: Roberto Rubboli, Milad M. Goodarzi, Marco Tomamichel,
- Abstract summary: We study properties of trace functionals that generalize those in [Zhang, Adv. Math. 365:107053 ( 2020)], arising from a novel family of conditional entropies with applications in quantum information.<n>Building on new convexity results for these functionals, we establish data-processing inequalities and additivity properties for our entropies, demonstrating their operational significance.
- Score: 7.988085110283119
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study geometric properties of trace functionals that generalize those in [Zhang, Adv. Math. 365:107053 (2020)], arising from a novel family of conditional entropies with applications in quantum information. Building on new convexity results for these functionals, we establish data-processing inequalities and additivity properties for our entropies, demonstrating their operational significance. We further prove completeness under duality, chain rules, and various monotonicity properties for this family. Our proofs draw on tools from complex interpolation theory, multivariate Araki--Lieb and Lieb--Thirring inequalities, variational characterizations of trace functionals, and spectral pinching techniques.
Related papers
- Loss-Complexity Landscape and Model Structure Functions [56.01537787608726]
We develop a framework for dualizing the Kolmogorov structure function $h_x(alpha)$.<n>We establish a mathematical analogy between information-theoretic constructs and statistical mechanics.<n>We explicitly prove the Legendre-Fenchel duality between the structure function and free energy.
arXiv Detail & Related papers (2025-07-17T21:31:45Z) - Evolution of multi-qubit correlations driven by mutual interactions [49.1574468325115]
We analyze the evolution of the correlation tensor elements of quantum systems composed of $frac12$-spins.<n>We show how a strong external field can play a stabilizing factor with respect to certain correlation characteristics.
arXiv Detail & Related papers (2025-07-01T11:45:08Z) - Precision bounds for multiple currents in open quantum systems [37.69303106863453]
We derivation quantum TURs and KURs for multiple observables in open quantum systems undergoing Markovian dynamics.
Our bounds are tighter than previously derived quantum TURs and KURs for single observables.
We also find an intriguing quantum signature of correlations captured by the off-diagonal element of the Fisher information matrix.
arXiv Detail & Related papers (2024-11-13T23:38:24Z) - Some new considerations about the $ν$-function [0.0]
We show that the $nu$-function plays the role of the normalization function of generalized hypergeometric coherent states for quantum systems with a continuous spectrum.
To our knowledge, the results obtained by us do not appear in the literature.
arXiv Detail & Related papers (2024-09-09T10:08:17Z) - Quantum channels, complex Stiefel manifolds, and optimization [45.9982965995401]
We establish a continuity relation between the topological space of quantum channels and the quotient of the complex Stiefel manifold.
The established relation can be applied to various quantum optimization problems.
arXiv Detail & Related papers (2024-08-19T09:15:54Z) - Inevitable Negativity: Additivity Commands Negative Quantum Channel Entropy [2.7961972519572442]
Quantum channels represent a broad spectrum of operations crucial to quantum information theory.
This paper establishes a rigorous framework for assessing the uncertainty in both classical and quantum channels.
arXiv Detail & Related papers (2024-06-19T20:33:17Z) - Approximation of multipartite quantum states: revised version with new applications [0.0]
An universal approximation technique is proposed for analysis of different characteristics of states of composite infinite-dimensional quantum systems.
Results are applied to the study of three important characteristics: the relative entropy of $pi$-entanglement, the Rains bound and the conditional entanglement of mutual information.
arXiv Detail & Related papers (2024-01-04T17:59:01Z) - Quantifying High-Order Interdependencies in Entangled Quantum States [43.70611649100949]
We introduce the Q-information: an information-theoretic measure capable of distinguishing quantum states dominated by synergy or redundancy.
We show that quantum systems need at least four variables to exhibit high-order properties.
Overall, the Q-information sheds light on novel aspects of the internal organisation of quantum systems and their time evolution.
arXiv Detail & Related papers (2023-10-05T17:00:13Z) - Entanglement and entropy in multipartite systems: a useful approach [0.0]
We show how the notion of concurrence vector, re-expressed in a particularly useful form, provides new insights and computational tools.
The approach is also useful to derive sufficient conditions for genuine entanglement in generic multipartite systems.
arXiv Detail & Related papers (2023-07-11T12:20:30Z) - Transcendental properties of entropy-constrained sets: Part II [0.0]
We study the properties of the level sets of relative entropy, mutual information, and R'enyi entropies.
Our results rule out (semi)algebraic single-shot characterizations of these entropy measures with bounded ancilla for both the classical and quantum cases.
arXiv Detail & Related papers (2023-02-19T18:27:45Z) - No-signalling constrains quantum computation with indefinite causal
structure [45.279573215172285]
We develop a formalism for quantum computation with indefinite causal structures.
We characterize the computational structure of higher order quantum maps.
We prove that these rules, which have a computational and information-theoretic nature, are determined by the more physical notion of the signalling relations between the quantum systems.
arXiv Detail & Related papers (2022-02-21T13:43:50Z) - Quantum circuits for the preparation of spin eigenfunctions on quantum
computers [63.52264764099532]
Hamiltonian symmetries are an important instrument to classify relevant many-particle wavefunctions.
This work presents quantum circuits for the exact and approximate preparation of total spin eigenfunctions on quantum computers.
arXiv Detail & Related papers (2022-02-19T00:21:46Z) - Quantum logical entropy: fundamentals and general properties [0.0]
We introduce the quantum logical entropy to study quantum systems.
We prove several properties of this entropy for generic density matrices.
We extend the notion of quantum logical entropy to post-selected systems.
arXiv Detail & Related papers (2021-08-05T16:47:22Z) - Moments of quantum purity and biorthogonal polynomial recurrence [6.482224543491085]
We study the statistical behavior of entanglement over the Bures-Hall ensemble as measured by the simplest form of an entanglement entropy - the quantum purity.
The main results of this work are the exact second and third moment expressions of quantum purity valid for any subsystem dimensions.
arXiv Detail & Related papers (2021-07-09T19:18:34Z) - Majorization effect on entropic functionals: An application to a V-type
three-level atom-field interacting system [0.0]
Majorization effect on some entropic functionals, such as von-Neumann, Shannon, atomic Wehrl and R'enyi entropies are investigated.
arXiv Detail & Related papers (2021-06-27T13:02:28Z) - The generalized strong subadditivity of the von Neumann entropy for bosonic quantum systems [5.524804393257921]
We prove a generalization of the strong subadditivity of the von Neumann entropy for bosonic quantum Gaussian systems.
We apply our result to prove new entropic uncertainty relations with quantum memory, a generalization of the quantum Entropy Power Inequality, and the linear time scaling of the entanglement entropy produced by quadratic Hamiltonians.
arXiv Detail & Related papers (2021-05-12T12:52:40Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - Quantum Entropic Causal Inference [30.939150842529052]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
arXiv Detail & Related papers (2021-02-23T15:51:34Z) - Finite-Function-Encoding Quantum States [52.77024349608834]
We introduce finite-function-encoding (FFE) states which encode arbitrary $d$-valued logic functions.
We investigate some of their structural properties.
arXiv Detail & Related papers (2020-12-01T13:53:23Z) - Hilbert-space geometry of random-matrix eigenstates [55.41644538483948]
We discuss the Hilbert-space geometry of eigenstates of parameter-dependent random-matrix ensembles.
Our results give the exact joint distribution function of the Fubini-Study metric and the Berry curvature.
We compare our results to numerical simulations of random-matrix ensembles as well as electrons in a random magnetic field.
arXiv Detail & Related papers (2020-11-06T19:00:07Z) - Bounding generalized relative entropies: Nonasymptotic quantum speed
limits [0.0]
Information theory has become an increasingly important research field to better understand quantum mechanics.
Relative entropy quantifies how difficult is to tell apart two probability distributions, or even two quantum states.
We show how this quantity changes under a quantum process.
arXiv Detail & Related papers (2020-08-27T15:37:04Z) - A refinement of Reznick's Positivstellensatz with applications to
quantum information theory [72.8349503901712]
In Hilbert's 17th problem Artin showed that any positive definite in several variables can be written as the quotient of two sums of squares.
Reznick showed that the denominator in Artin's result can always be chosen as an $N$-th power of the squared norm of the variables.
arXiv Detail & Related papers (2019-09-04T11:46:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.