論文の概要: Unpicking Data at the Seams: Understanding Disentanglement in VAEs
- arxiv url: http://arxiv.org/abs/2410.22559v6
- Date: Tue, 30 Sep 2025 16:35:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 17:09:03.85601
- Title: Unpicking Data at the Seams: Understanding Disentanglement in VAEs
- Title(参考訳): シームでデータを探す:VAEにおける絡み合いを理解する
- Authors: Carl Allen,
- Abstract要約: データ多様体上の密度が独立した一次元のシームに沿って分解するように、デコーダの局所軸がどのように「ロック」されるかを示す。
このことは、非絡み合いを明確に定義し、なぜそれがVAEに現れるのかを説明し、前提条件の下では、基底真理因子が対称な先行条件でも識別可能であることを示す。
- 参考スコア(独自算出の注目度): 1.2352619722637816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A generative latent variable model is said to be disentangled when varying a single latent co-ordinate changes a single aspect of samples generated, e.g. object position or facial expression in an image. Related phenomena are seen in several generative paradigms, including state-of-the-art diffusion models, but disentanglement is most notably observed in Variational Autoencoders (VAEs), where oft-used diagonal posterior covariances are argued to be the cause. We make this picture precise. From a known exact link between optimal Gaussian posteriors and decoder derivatives, we show how diagonal posteriors "lock" a decoder's local axes so that density over the data manifold factorises along independent one-dimensional seams that map to axis-aligned directions in latent space. This gives a clear definition of disentanglement, explains why it emerges in VAEs and shows that, under stated assumptions, ground truth factors are identifiable even with a symmetric prior.
- Abstract(参考訳): 生成潜在変数モデルは、画像内のオブジェクトの位置や表情など、生成されたサンプルの1つの側面を1つの潜伏座標が変化させると、アンタングルされると言われる。
関連する現象は、最先端拡散モデルを含むいくつかの生成パラダイムで見られるが、乱れは変分オートエンコーダ(VAE)において最も顕著に見られ、そこでは対角線後部共分散が原因であると主張する。
私たちはこの絵を正確にする。
最適ガウス後部とデコーダ微分の間の既知の正確なリンクから、デコーダの局所軸を斜め後部が「ロック」することにより、データ多様体上の密度が、ラテント空間内の軸方向に写像する独立した一次元のシームに沿って分解されることを示す。
このことは、非絡み合いを明確に定義し、なぜそれがVAEに現れるのかを説明し、前提条件の下では、基底真理因子が対称な先行条件でも識別可能であることを示す。
関連論文リスト
- Causal Discovery on Dependent Binary Data [6.464898093190062]
本稿では,関係するバイナリデータに基づく因果グラフ学習のためのデコレーションに基づくアプローチを提案する。
我々は,潜在ユーティリティ変数のサンプルの生成とデコレーションを行うEMライクな反復アルゴリズムを開発した。
提案手法は因果グラフ学習の精度を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2024-12-28T21:55:42Z) - Integrating Random Effects in Variational Autoencoders for Dimensionality Reduction of Correlated Data [9.990687944474738]
LMMVAEは、従来のVAEラテントモデルを固定部品とランダム部品に分離する新しいモデルである。
その結果, 正方形復元誤差と負の可能性損失は, 未確認データに対して有意に改善した。
論文 参考訳(メタデータ) (2024-12-22T07:20:17Z) - Unsupervised Representation Learning from Sparse Transformation Analysis [79.94858534887801]
本稿では,潜在変数のスパース成分への変換を分解し,シーケンスデータから表現を学習することを提案する。
入力データは、まず潜伏活性化の分布として符号化され、その後確率フローモデルを用いて変換される。
論文 参考訳(メタデータ) (2024-10-07T23:53:25Z) - Disentanglement with Factor Quantized Variational Autoencoders [11.086500036180222]
本稿では,生成因子に関する基礎的真理情報をモデルに提供しない離散変分オートエンコーダ(VAE)モデルを提案する。
本研究では, 離散表現を学習する上で, 連続表現を学習することの利点を実証する。
FactorQVAEと呼ばれる手法は、最適化に基づく不整合アプローチと離散表現学習を組み合わせる。
論文 参考訳(メタデータ) (2024-09-23T09:33:53Z) - An improved tabular data generator with VAE-GMM integration [9.4491536689161]
本稿では,現在のアプローチの限界に対処する新しい変分オートエンコーダ(VAE)モデルを提案する。
本手法は,TVAEモデルにインスパイアされたベイジアン・ガウス混合モデル(BGM)をVAEアーキテクチャに組み込む。
我々は,2つの医療関連データセットを含む混合データ型を持つ実世界の3つのデータセットに対して,我々のモデルを徹底的に検証する。
論文 参考訳(メタデータ) (2024-04-12T12:31:06Z) - Disentanglement via Latent Quantization [60.37109712033694]
本研究では,組織化された潜在空間からの符号化と復号化に向けた帰納的バイアスを構築する。
本稿では,基本データレコーダ (vanilla autoencoder) と潜時再構成 (InfoGAN) 生成モデルの両方に追加することで,このアプローチの広範な適用性を実証する。
論文 参考訳(メタデータ) (2023-05-28T06:30:29Z) - Targeted Analysis of High-Risk States Using an Oriented Variational
Autoencoder [3.494548275937873]
可変オートエンコーダ(VAE)ニューラルネットワークは、電力系統状態を生成するために訓練することができる。
VAEの潜在空間符号の座標は、データの概念的特徴と相関することが示されている。
本稿では、遅延空間コードと生成されたデータとのリンクを制限するために、指向性変動オートエンコーダ(OVAE)を提案する。
論文 参考訳(メタデータ) (2023-03-20T19:34:21Z) - DOT-VAE: Disentangling One Factor at a Time [1.6114012813668934]
本稿では,変分オートエンコーダの潜伏空間を乱交空間で拡張し,Wake-Sleep-inspireed two-step algorithm for unsupervised disentanglementを用いて学習する手法を提案する。
我々のネットワークは、解釈可能な独立した因子を一度に1つのデータから切り離すことを学び、それを非絡み合った潜在空間の異なる次元にエンコードし、因子の数やそれらの共同分布について事前の仮定をしない。
論文 参考訳(メタデータ) (2022-10-19T22:53:02Z) - Rethinking Data Heterogeneity in Federated Learning: Introducing a New
Notion and Standard Benchmarks [65.34113135080105]
我々は、現在のセットアップにおけるデータ不均一性の問題が必ずしも問題であるだけでなく、FL参加者にとって有益であることを示す。
私たちの観察は直感的である。
私たちのコードはhttps://github.com/MMorafah/FL-SC-NIIDで利用可能です。
論文 参考訳(メタデータ) (2022-09-30T17:15:19Z) - Improving Correlation Capture in Generating Imbalanced Data using
Differentially Private Conditional GANs [2.2265840715792735]
DP-CGANSは,データ変換,サンプリング,コンディショニング,ネットワークトレーニングにより,現実的かつプライバシ保護データを生成する,微分プライベートな条件付きGANフレームワークである。
統計的類似性,機械学習性能,プライバシ測定の点から,3つの公開データセットと2つの実世界の個人健康データセットの最先端生成モデルを用いて,我々のモデルを広範囲に評価した。
論文 参考訳(メタデータ) (2022-06-28T06:47:27Z) - SIReN-VAE: Leveraging Flows and Amortized Inference for Bayesian
Networks [2.8597160727750564]
この研究はベイジアンネットワークによって定義された任意の依存構造をVAEに組み込むことを検討する。
これは、事前と推論のネットワークをグラフィカルな残留フローで拡張することで実現される。
モデルの性能をいくつかの合成データセットで比較し、データスパース設定におけるその可能性を示す。
論文 参考訳(メタデータ) (2022-04-23T10:31:08Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
データから解釈可能な等価性を発見する方法について検討する。
具体的には、モデルのパラメータ共有方式に対する最適化問題として、この発見プロセスを定式化する。
また,ガウスデータの手法を理論的に解析し,研究された発見スキームとオラクルスキームの間の平均2乗ギャップを限定する。
論文 参考訳(メタデータ) (2022-04-07T17:59:19Z) - Self-Conditioned Generative Adversarial Networks for Image Editing [61.50205580051405]
Generative Adversarial Networks (GAN) はバイアスの影響を受けやすい。
我々は、このバイアスが公平性だけでなく、分布のコアから逸脱する際の潜在トラバース編集手法の崩壊に重要な役割を果たしていると論じる。
論文 参考訳(メタデータ) (2022-02-08T18:08:24Z) - Learning Conditional Invariance through Cycle Consistency [60.85059977904014]
本稿では,データセットの変動の有意義な要因と独立な要因を識別する新しい手法を提案する。
提案手法は,対象プロパティと残りの入力情報に対する2つの別個の潜在部分空間を含む。
我々は,より意味のある因子を同定し,よりスペーサーや解釈可能なモデルに導く合成および分子データについて実証する。
論文 参考訳(メタデータ) (2021-11-25T17:33:12Z) - Is Disentanglement enough? On Latent Representations for Controllable
Music Generation [78.8942067357231]
強い生成デコーダが存在しない場合、アンタングル化は必ずしも制御性を意味するものではない。
VAEデコーダに対する潜伏空間の構造は、異なる属性を操作するための生成モデルの能力を高める上で重要な役割を果たす。
論文 参考訳(メタデータ) (2021-08-01T18:37:43Z) - Multivariate Data Explanation by Jumping Emerging Patterns Visualization [78.6363825307044]
多変量データセットにおけるパターンの識別と視覚的解釈を支援するVAX(multiVariate dAta eXplanation)を提案する。
既存の類似のアプローチとは異なり、VAXはJumping Emerging Patternsという概念を使って、複数の多様化したパターンを特定し、集約し、データ変数のロジックの組み合わせを通して説明を生成する。
論文 参考訳(メタデータ) (2021-06-21T13:49:44Z) - Semi-Supervised Disentanglement of Class-Related and Class-Independent
Factors in VAE [4.533408938245526]
本稿では,データ変動のクラス関連要因とクラス非依存要因を両立できるフレームワークを提案する。
このフレームワークは,データからクラス関連因子を抽出するプロセスを改善するために,潜在空間における注意機構を利用する。
実験の結果,我々のフレームワークは,クラス関連要因とクラス非依存要因を分離し,解釈可能な特徴を学習していることがわかった。
論文 参考訳(メタデータ) (2021-02-01T15:05:24Z) - Autoencoding Variational Autoencoder [56.05008520271406]
我々は,この行動が学習表現に与える影響と,自己整合性の概念を導入することでそれを修正する結果について検討する。
自己整合性アプローチで訓練されたエンコーダは、敵攻撃による入力の摂動に対して頑健な(無神経な)表現につながることを示す。
論文 参考訳(メタデータ) (2020-12-07T14:16:14Z) - Category-Learning with Context-Augmented Autoencoder [63.05016513788047]
実世界のデータの解釈可能な非冗長表現を見つけることは、機械学習の鍵となる問題の一つである。
本稿では,オートエンコーダのトレーニングにデータ拡張を利用する新しい手法を提案する。
このような方法で変分オートエンコーダを訓練し、補助ネットワークによって変換結果を予測できるようにする。
論文 参考訳(メタデータ) (2020-10-10T14:04:44Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
本稿では,データセットの組み合わせから頑健で一般化可能な予測モデルを学習する際の問題点について検討する。
堅牢なモデルを学ぶことの課題の一部は、保存されていない共同設立者の影響にある。
異なるモダリティの医療データに対するアプローチの実証的性能を実証する。
論文 参考訳(メタデータ) (2020-07-21T08:18:06Z) - CausalVAE: Structured Causal Disentanglement in Variational Autoencoder [52.139696854386976]
変分オートエンコーダ(VAE)の枠組みは、観測から独立した因子をアンタングルするために一般的に用いられる。
本稿では, 因果内因性因子を因果内因性因子に変換する因果層を含むVOEベースの新しいフレームワークCausalVAEを提案する。
その結果、CausalVAEが学習した因果表現は意味論的に解釈可能であり、DAG(Directed Acyclic Graph)としての因果関係は精度良く同定された。
論文 参考訳(メタデータ) (2020-04-18T20:09:34Z) - Deterministic Decoding for Discrete Data in Variational Autoencoders [5.254093731341154]
サンプリングの代わりに最上位のトークンを選択するシーケンシャルデータに対して,決定論的デコーダ(DD-VAE)を用いたVAEモデルについて検討する。
分子生成や最適化問題を含む複数のデータセット上でのDD-VAEの性能を示す。
論文 参考訳(メタデータ) (2020-03-04T16:36:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。