論文の概要: Incremental Learning of Retrievable Skills For Efficient Continual Task Adaptation
- arxiv url: http://arxiv.org/abs/2410.22658v1
- Date: Wed, 30 Oct 2024 02:57:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:28:33.127910
- Title: Incremental Learning of Retrievable Skills For Efficient Continual Task Adaptation
- Title(参考訳): 逐次的タスク適応のための検索可能なスキルの増分学習
- Authors: Daehee Lee, Minjong Yoo, Woo Kyung Kim, Wonje Choi, Honguk Woo,
- Abstract要約: CiL(Continuous Imitation Learning)は、マルチタスクポリシーを達成するために、複数のステージやタスクにわたるデモからタスク知識を抽出し、蓄積する。
私たちは、異なるデモンストレーションから共有可能なスキルを段階的に学習することで、知識共有のこの制限に対処するアダプタベースのCiLフレームワークであるIsCiLを紹介します。
Franka-KitchenとMeta-Worldの複雑なタスクを用いたCiL実験は、タスク適応とサンプル効率の両方において、IsCiLの堅牢な性能を示す。
- 参考スコア(独自算出の注目度): 5.889199191387869
- License:
- Abstract: Continual Imitation Learning (CiL) involves extracting and accumulating task knowledge from demonstrations across multiple stages and tasks to achieve a multi-task policy. With recent advancements in foundation models, there has been a growing interest in adapter-based CiL approaches, where adapters are established parameter-efficiently for tasks newly demonstrated. While these approaches isolate parameters for specific tasks and tend to mitigate catastrophic forgetting, they limit knowledge sharing among different demonstrations. We introduce IsCiL, an adapter-based CiL framework that addresses this limitation of knowledge sharing by incrementally learning shareable skills from different demonstrations, thus enabling sample-efficient task adaptation using the skills particularly in non-stationary CiL environments. In IsCiL, demonstrations are mapped into the state embedding space, where proper skills can be retrieved upon input states through prototype-based memory. These retrievable skills are incrementally learned on their corresponding adapters. Our CiL experiments with complex tasks in Franka-Kitchen and Meta-World demonstrate robust performance of IsCiL in both task adaptation and sample-efficiency. We also show a simple extension of IsCiL for task unlearning scenarios.
- Abstract(参考訳): CiL(Continuous Imitation Learning)は、マルチタスクポリシーを達成するために、複数のステージやタスクにわたるデモからタスク知識を抽出し、蓄積する。
近年、基礎モデルの進歩に伴い、アダプタベースのCiLアプローチへの関心が高まっており、新たに実証されたタスクに対して、アダプタをパラメータ効率よく確立している。
これらのアプローチは特定のタスクのパラメータを分離し、破滅的な忘れを緩和する傾向があるが、異なるデモンストレーション間での知識共有を制限する。
そこで我々はIsCiLというアダプタベースのCiLフレームワークを紹介した。このフレームワークは、異なるデモから共有可能なスキルを段階的に学習することで、知識共有のこの制限に対処し、特に静止しないCiL環境でのスキルを用いたサンプル効率なタスク適応を可能にする。
IsCiLでは、デモを状態埋め込み空間にマッピングし、プロトタイプベースのメモリを通じて入力状態から適切なスキルを取得できる。
これらの検索可能なスキルは、対応するアダプタで漸進的に学習される。
Franka-KitchenとMeta-Worldの複雑なタスクを用いたCiL実験は、タスク適応とサンプル効率の両方において、IsCiLの堅牢な性能を示す。
また、タスク未学習シナリオに対するIsCiLの簡単な拡張を示す。
関連論文リスト
- How does Multi-Task Training Affect Transformer In-Context Capabilities? Investigations with Function Classes [6.652837942112205]
大規模言語モデル(LLM)は、テキストとして提供される少数の例に基づいて、目に見えないタスクを実行するという異常な能力を示している。
我々は、ICLモデルによるデータ効率の向上と、より安定した収束を実現するための効果的なカリキュラム学習戦略をいくつか提案する。
実験の結果, ICLモデルでは, 従来の課題を混在させながら, 段階的に難しいタスクを学習することで, 難易度を効果的に学習できることが判明した。
論文 参考訳(メタデータ) (2024-04-04T16:15:23Z) - Enhancing Vision-Language Few-Shot Adaptation with Negative Learning [11.545127156146368]
我々は,タスク固有の知識をより効率的に活用するための,シンプルで効果的な否定的学習手法SimNLを提案する。
そこで本研究では,雑音を緩和するために,プラグアンドプレイによる数発のインスタンス再重み付け手法を提案する。
提案したSimNLは,少数ショット学習とドメイン一般化の両タスクにおいて,既存の最先端手法よりも優れていることを確認した。
論文 参考訳(メタデータ) (2024-03-19T17:59:39Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - Dynamic Transformer Architecture for Continual Learning of Multimodal
Tasks [27.59758964060561]
トランスフォーマーニューラルネットワークは、さまざまなデータモダリティの幅広いアプリケーションにおいて、以前のアーキテクチャを置き換える傾向にある。
連続学習(CL)は、自律学習エージェントに順次到着するタスク間で知識の伝達を容易にすることで、ソリューションとして現れる。
本稿では,視覚と言語の両方に関わる学習タスクに着目したトランスフォーマーベースのCLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-27T03:03:30Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
マルチタスク学習(MTL)は、複数の関連するタスクを共同で学習し、共有表現空間から恩恵を受けるフレームワークである。
MTLは、ほとんど重複しない、あるいは重複しないアノテーションで分類タスクで成功することを示す。
本稿では,分散マッチングによるタスク間の知識交換を可能にする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-02T14:18:11Z) - Customizable Combination of Parameter-Efficient Modules for Multi-Task
Learning [11.260650180067278]
タスク共通スキルとタスク特化スキルを組み合わせた,新しいアプローチを提案する。
スキル割り当て行列を共同で学習する。
以上の結果から, C-Polyは, 完全共有, タスク特化, スキル非差別性ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2023-12-06T02:47:56Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
複数のタスク入力を処理するために,LLMのコンテキスト内学習機能を活用したOverPromptを提案する。
本実験により,OverPromptはタスク性能を著しく損なうことなく,コスト効率の良いゼロショット分類を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-05-24T10:08:04Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて、文脈内学習による顕著な結果を示している。
ICL-D3IEと呼ばれるシンプルだが効果的なテキスト内学習フレームワークを提案する。
具体的には、ハードトレーニング文書から最も困難で独特なセグメントをハードデモとして抽出する。
論文 参考訳(メタデータ) (2023-03-09T06:24:50Z) - Active Task Randomization: Learning Robust Skills via Unsupervised
Generation of Diverse and Feasible Tasks [37.73239471412444]
我々は、教師なしのトレーニングタスクの生成を通じて、堅牢なスキルを学ぶアプローチであるActive Task Randomization (ATR)を導入する。
ATRは、タスクの多様性と実現可能性のバランスをとることで、堅牢なスキルを学ぶために、初期環境状態と操作目標からなる適切なタスクを選択する。
本研究では,視覚的入力に基づく逐次操作問題の解決のために,タスクプランナが学習スキルを構成することを実証する。
論文 参考訳(メタデータ) (2022-11-11T11:24:55Z) - Effective Adaptation in Multi-Task Co-Training for Unified Autonomous
Driving [103.745551954983]
本稿では,3つの下流タスクにおけるMoCoやSimCLRなど,多種多様な自己監督手法の転送性能について検討する。
彼らのパフォーマンスは、サブ最適か、あるいはシングルタスクベースラインよりもはるかに遅れていることに気付きました。
汎用マルチタスクトレーニングのための,単純かつ効果的な事前訓練-適応-ファインチューンパラダイムを提案する。
論文 参考訳(メタデータ) (2022-09-19T12:15:31Z) - Conditional Meta-Learning of Linear Representations [57.90025697492041]
表現学習のための標準メタラーニングは、複数のタスク間で共有される共通の表現を見つけることを目的とする。
本研究では,タスクの側情報を手作業に適した表現にマッピングし,条件付け関数を推定することで,この問題を克服する。
この利点を実用的に活用できるメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-30T12:02:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。