論文の概要: Exactly Minimax-Optimal Locally Differentially Private Sampling
- arxiv url: http://arxiv.org/abs/2410.22699v1
- Date: Wed, 30 Oct 2024 05:13:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:28:08.918750
- Title: Exactly Minimax-Optimal Locally Differentially Private Sampling
- Title(参考訳): 極小極小局所差分サンプリング
- Authors: Hyun-Young Park, Shahab Asoodeh, Si-Hyeon Lee,
- Abstract要約: 最小限の意味でのプライベートサンプリングの基本的なPUTを定義し、元の分布とサンプリング分布のf分割を有効尺度として用いた。
有限データ空間と連続データ空間の両方の正確なPUTをデータ分布の温和な条件下で特徴付けるとともに、すべてのf-分岐に対して普遍的に最適であるサンプリング機構を提案する。
- 参考スコア(独自算出の注目度): 12.587817635325266
- License:
- Abstract: The sampling problem under local differential privacy has recently been studied with potential applications to generative models, but a fundamental analysis of its privacy-utility trade-off (PUT) remains incomplete. In this work, we define the fundamental PUT of private sampling in the minimax sense, using the f-divergence between original and sampling distributions as the utility measure. We characterize the exact PUT for both finite and continuous data spaces under some mild conditions on the data distributions, and propose sampling mechanisms that are universally optimal for all f-divergences. Our numerical experiments demonstrate the superiority of our mechanisms over baselines, in terms of theoretical utilities for finite data space and of empirical utilities for continuous data space.
- Abstract(参考訳): 局所的な差分プライバシーの下でのサンプリング問題は、最近、生成モデルへの潜在的な応用について研究されているが、そのプライバシーユーティリティトレードオフ(PUT)に関する根本的な分析は、いまだ不完全である。
本研究は,標本分布のf偏差を有効指標として,ミニマックス意味でのプライベートサンプリングの基本PUTを定義する。
有限データ空間と連続データ空間の両方の正確なPUTを、データ分布の穏やかな条件下で特徴付けるとともに、すべてのf-分岐に対して普遍的に最適であるサンプリング機構を提案する。
数値実験により, 有限データ空間の理論的ユーティリティ, 連続データ空間の経験的ユーティリティの観点から, ベースライン以上の機構の優位性を実証した。
関連論文リスト
- Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
連続時間マルコフ連鎖(CTMC)に基づくスコアベース離散拡散モデルの理論的側面について検討する。
本稿では,事前定義された時間点におけるスコア推定値を利用する離散時間サンプリングアルゴリズムを一般状態空間$[S]d$に導入する。
我々の収束解析はジルサノフ法を用いて離散スコア関数の重要な性質を確立する。
論文 参考訳(メタデータ) (2024-10-03T09:07:13Z) - A Likelihood Based Approach to Distribution Regression Using Conditional Deep Generative Models [6.647819824559201]
本研究では,条件付き深部生成モデルの推定のための可能性に基づくアプローチの大規模サンプル特性について検討する。
その結果,条件分布を推定するための最大極大推定器の収束率を導いた。
論文 参考訳(メタデータ) (2024-10-02T20:46:21Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Optimal Locally Private Nonparametric Classification with Public Data [2.631955426232593]
本研究では,非パラメトリック分類に着目して,公共データを利用した非対話型局所微分プライベート(LDP)学習の問題点について検討する。
後方ドリフト仮定の下では, LDP制約による最小収束率を導出する。
そこで本研究では,極小最大収束率を達成できる新しい手法である局所微分プライベート分類木を提案する。
論文 参考訳(メタデータ) (2023-11-19T16:35:01Z) - On the Inherent Privacy Properties of Discrete Denoising Diffusion Models [17.773335593043004]
本稿では、離散拡散モデルに固有のプライバシー保護の先駆的な理論的探索について述べる。
我々のフレームワークは、トレーニングデータセット内の各データポイントの潜在的なプライバシー漏洩を解明する。
当社のバウンダリは、$$$サイズのデータポイントによるトレーニングが、プライバシー漏洩の急増につながっていることも示しています。
論文 参考訳(メタデータ) (2023-10-24T05:07:31Z) - Private Set Generation with Discriminative Information [63.851085173614]
異なるプライベートなデータ生成は、データプライバシの課題に対する有望な解決策である。
既存のプライベートな生成モデルは、合成サンプルの有用性に苦慮している。
我々は,最先端アプローチのサンプルユーティリティを大幅に改善する,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T10:02:55Z) - Differentially private multivariate medians [4.588028371034407]
差分的にプライベートな深度に基づく中央値に対する新しい有限サンプル性能保証法を開発した。
Cauchyの限界の下では、重み付けされた位置推定のコストがプライバシーのコストよりも高いことを示している。
論文 参考訳(メタデータ) (2022-10-12T17:56:04Z) - ManiFlow: Implicitly Representing Manifolds with Normalizing Flows [145.9820993054072]
正規化フロー(NF)は、複雑な実世界のデータ分布を正確にモデル化することが示されているフレキシブルな明示的な生成モデルである。
摂動分布から標本を与えられた多様体上の最も可能性の高い点を復元する最適化目的を提案する。
最後に、NFsの明示的な性質、すなわち、ログのような勾配とログのような勾配から抽出された表面正規化を利用する3次元点雲に焦点を当てる。
論文 参考訳(メタデータ) (2022-08-18T16:07:59Z) - Compressive Privatization: Sparse Distribution Estimation under Locally
Differentially Privacy [18.43218511751587]
対象の分布がスパースかほぼスパースである限り、必要なサンプルの数は大幅に削減できることを示した。
我々のメカニズムは民営化と次元化を同時に行い、サンプルの複雑さは次元化の減少にのみ依存する。
論文 参考訳(メタデータ) (2020-12-03T17:14:23Z) - A Discriminative Technique for Multiple-Source Adaptation [55.5865665284915]
本稿では,マルチソース適応のための新しい識別手法,MSA,問題を提案する。
我々のソリューションは、ソースドメインからのラベルなしデータから容易に正確に推定できる条件付き確率のみを必要とする。
実世界の応用実験により、新しい識別的MSAアルゴリズムは、以前の生成解よりも優れていたことがさらに証明された。
論文 参考訳(メタデータ) (2020-08-25T14:06:15Z) - GANs with Conditional Independence Graphs: On Subadditivity of
Probability Divergences [70.30467057209405]
GAN(Generative Adversarial Networks)は、データセットの基盤となる分布を学習するための現代的な手法である。
GANは、基礎となるディストリビューションに関する追加情報がないモデルフリーで設計されている。
本稿では,ベイズネット/MRFの近傍に単純な識別器群を用いたモデルベースGANの設計を提案する。
論文 参考訳(メタデータ) (2020-03-02T04:31:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。