論文の概要: Enhancing binary classification: A new stacking method via leveraging computational geometry
- arxiv url: http://arxiv.org/abs/2410.22722v1
- Date: Wed, 30 Oct 2024 06:11:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:26:21.156547
- Title: Enhancing binary classification: A new stacking method via leveraging computational geometry
- Title(参考訳): 二項分類の強化:計算幾何学を利用した新しい積み重ね法
- Authors: Wei Wu, Liang Tang, Zhongjie Zhao, Chung-Piaw Teo,
- Abstract要約: 本稿では,計算幾何学的手法,特に最大重み付き矩形問題の解法を統合した新しいメタモデルを提案する。
本手法は複数のオープンデータセットを用いて評価し,その安定性と精度の向上を示す統計解析を行った。
本手法は, アンサンブル学習の積み重ねだけでなく, 病院の健康評価評価や銀行信用評価システムなど, 様々な実世界の応用にも応用できる。
- 参考スコア(独自算出の注目度): 5.906199156511947
- License:
- Abstract: Stacking, a potent ensemble learning method, leverages a meta-model to harness the strengths of multiple base models, thereby enhancing prediction accuracy. Traditional stacking techniques typically utilize established learning models, such as logistic regression, as the meta-model. This paper introduces a novel approach that integrates computational geometry techniques, specifically solving the maximum weighted rectangle problem, to develop a new meta-model for binary classification. Our method is evaluated on multiple open datasets, with statistical analysis showing its stability and demonstrating improvements in accuracy compared to current state-of-the-art stacking methods with out-of-fold predictions. This new stacking method also boasts two significant advantages: enhanced interpretability and the elimination of hyperparameter tuning for the meta-model, thus increasing its practicality. These merits make our method highly applicable not only in stacking ensemble learning but also in various real-world applications, such as hospital health evaluation scoring and bank credit scoring systems, offering a fresh evaluation perspective.
- Abstract(参考訳): 強力なアンサンブル学習手法であるスタックリングは、メタモデルを利用して、複数のベースモデルの強みを活用し、予測精度を向上させる。
従来の積み重ね技術は一般的にメタモデルとしてロジスティック回帰のような確立した学習モデルを利用する。
本稿では,計算幾何学的手法,特に最大重み付き矩形問題の解法を統合した新しいメタモデルを提案する。
提案手法を複数のオープンデータセット上で評価し,その安定性と精度の向上を統計的に示す。
この手法には,メタモデルに対する解釈可能性の向上とハイパーパラメータチューニングの排除という,2つの大きな利点がある。
これらのメリットは,アンサンブル学習を積み重ねるだけでなく,病院の健康評価スコアリングや銀行信用スコアシステムなど,様々な実世界の応用にも応用でき,新たな評価視点を提供する。
関連論文リスト
- Latent Anomaly Detection Through Density Matrices [3.843839245375552]
本稿では,密度推定に基づく異常検出手法の頑健な統計的原理と深層学習モデルの表現学習能力を組み合わせた,新しい異常検出フレームワークを提案する。
このフレームワークから派生した手法は、浅いアプローチと、データの低次元表現を学習するためにオートエンコーダを統合するディープアプローチの2つの異なるバージョンで示される。
論文 参考訳(メタデータ) (2024-08-14T15:44:51Z) - Modern Neighborhood Components Analysis: A Deep Tabular Baseline Two Decades Later [59.88557193062348]
我々は、インスタンス間のセマンティックな類似性をキャプチャする線形射影を学習するために設計された古典的近傍成分分析(NCA)を再考する。
学習目的の調整や深層学習アーキテクチャの統合といった微調整は,NAAの性能を著しく向上させることがわかった。
また,提案したModernNCAの効率性と予測精度を向上する,近隣のサンプリング戦略も導入する。
論文 参考訳(メタデータ) (2024-07-03T16:38:57Z) - Consensus-Adaptive RANSAC [104.87576373187426]
本稿では,パラメータ空間の探索を学習する新しいRANSACフレームワークを提案する。
注意機構は、ポイント・ツー・モデル残差のバッチで動作し、軽量のワンステップ・トランスフォーマーで見いだされたコンセンサスを考慮するために、ポイント・ツー・モデル推定状態を更新する。
論文 参考訳(メタデータ) (2023-07-26T08:25:46Z) - Generalized Low-Rank Update: Model Parameter Bounds for Low-Rank
Training Data Modifications [16.822770693792823]
少数のインスタンスや機能が加えられたり削除されたりした場合に最適なモデルが得られるインクリメンタル機械学習(ML)手法を開発した。
この問題は、クロスバリデーション(CV)や特徴選択といったモデル選択において、実際に重要である。
本稿では,線形推定器の低ランク更新フレームワークを,正規化された経験的リスク最小化のクラスとして定式化したMLメソッドに拡張する一般低ランク更新(GLRU)手法を提案する。
論文 参考訳(メタデータ) (2023-06-22T05:00:11Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Class-Incremental Learning with Strong Pre-trained Models [97.84755144148535]
CIL(Class-incremental Learning)は、少数のクラス(ベースクラス)から始まる設定で広く研究されている。
我々は、多数のベースクラスで事前訓練された強力なモデルから始まるCILの実証済み実世界の設定について検討する。
提案手法は、解析されたCIL設定すべてに頑健で一般化されている。
論文 参考訳(メタデータ) (2022-04-07T17:58:07Z) - Merging Models with Fisher-Weighted Averaging [24.698591753644077]
我々は、複数のモデルを1つに“マージ”するモデル間で知識を伝達する、根本的に異なる方法を紹介します。
提案手法は,モデルのパラメータの重み付け平均を効果的に計算する。
マージ手順により、これまで探索されていなかった方法でモデルを組み合わせることが可能であることを示す。
論文 参考訳(メタデータ) (2021-11-18T17:59:35Z) - Nonparametric Functional Analysis of Generalized Linear Models Under
Nonlinear Constraints [0.0]
本稿では、一般化線形モデルのための新しい非パラメトリック方法論を紹介する。
これは二項回帰の強さとカテゴリーデータに対する潜在変数の定式化の強さを組み合わせたものである。
これは最近公開された方法論のパラメトリックバージョンを拡張し、一般化する。
論文 参考訳(メタデータ) (2021-10-11T04:49:59Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
我々は、本質的にスパースモデルにつながるニューラルネットワークの新しい重みパラメータ化であるPowerpropagationを紹介した。
この方法で訓練されたモデルは同様の性能を示すが、0で明らかに高い密度の分布を持ち、より多くのパラメータを安全に刈り取ることができる。
ここでは、Powerpropagationと従来のウェイトプルーニング技術と、最近の最先端スパース・トゥ・スパースアルゴリズムを組み合わせることで、ImageNetベンチマークで優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-10-01T10:03:57Z) - Gradient-EM Bayesian Meta-learning [6.726255259929496]
ベイズメタラーニングの背後にある主要なアイデアは、階層的モデルのベイズ推論を経験的に行うことである。
本研究では、このフレームワークを様々な既存手法に拡張し、勾配-EMアルゴリズムに基づく変種を提案する。
正弦波回帰, 少数ショット画像分類, およびポリシーに基づく強化学習実験により, 本手法は計算コストを抑えて精度を向上するだけでなく, 不確実性に対しても頑健であることが示された。
論文 参考訳(メタデータ) (2020-06-21T10:52:59Z) - Model-Augmented Actor-Critic: Backpropagating through Paths [81.86992776864729]
現在のモデルに基づく強化学習アプローチでは、単に学習されたブラックボックスシミュレータとしてモデルを使用する。
その微分可能性を利用してモデルをより効果的に活用する方法を示す。
論文 参考訳(メタデータ) (2020-05-16T19:18:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。