論文の概要: Reliability Assessment of Information Sources Based on Random Permutation Set
- arxiv url: http://arxiv.org/abs/2410.22772v1
- Date: Wed, 30 Oct 2024 07:40:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:28:02.972425
- Title: Reliability Assessment of Information Sources Based on Random Permutation Set
- Title(参考訳): ランダムな置換集合に基づく情報ソースの信頼性評価
- Authors: Juntao Xu, Tianxiang Zhan, Yong Deng,
- Abstract要約: パターン認識では、不確実性への対処は意思決定と分類精度に大きな影響を及ぼす重要な課題である。
ランダム置換集合 (RPS) と Dempster-Shafer Theory (DST) の間の置換次数に基づく変換方法の欠如
本稿では, RPS に適した RPS 変換手法と確率変換手法を提案する。
- 参考スコア(独自算出の注目度): 9.542461785588925
- License:
- Abstract: In pattern recognition, handling uncertainty is a critical challenge that significantly affects decision-making and classification accuracy. Dempster-Shafer Theory (DST) is an effective reasoning framework for addressing uncertainty, and the Random Permutation Set (RPS) extends DST by additionally considering the internal order of elements, forming a more ordered extension of DST. However, there is a lack of a transformation method based on permutation order between RPS and DST, as well as a sequence-based probability transformation method for RPS. Moreover, the reliability of RPS sources remains an issue that requires attention. To address these challenges, this paper proposes an RPS transformation approach and a probability transformation method tailored for RPS. On this basis, a reliability computation method for RPS sources, based on the RPS probability transformation, is introduced and applied to pattern recognition. Experimental results demonstrate that the proposed approach effectively bridges the gap between DST and RPS and achieves superior recognition accuracy in classification problems.
- Abstract(参考訳): パターン認識では、不確実性への対処は意思決定と分類精度に大きな影響を及ぼす重要な課題である。
Dempster-Shafer Theory (DST) は不確実性に対処するための効果的な推論フレームワークであり、Random Permutation Set (RPS) はDSTを拡張して要素の内部順序を考慮し、より順序付けられたDSTの拡張を形成する。
しかし, RPS と DST の置換順序に基づく変換法や, RPS のシーケンスベース確率変換法が欠如している。
さらに、RSSソースの信頼性は、注意を要する問題である。
これらの課題に対処するために, RPS に適した RPS 変換手法と確率変換手法を提案する。
そこで, RPS の確率変換に基づく RPS 情報源の信頼性計算手法を導入し, パターン認識に適用した。
実験により,提案手法は DST と RPS のギャップを効果的に橋渡しし,分類問題において優れた認識精度を実現することを示す。
関連論文リスト
- Evaluating Evidential Reliability In Pattern Recognition Based On Intuitionistic Fuzzy Sets [9.542461785588925]
ファジィ信頼性指数(FRI)と呼ばれる証拠源の信頼性を定量化するアルゴリズムを提案する。
FRIアルゴリズムは、IFSから派生した決定量化規則に基づいており、決定を正し、これらの貢献から明らかな信頼性を導き出すために異なるBPAの貢献を定義する。
提案手法は,証拠資料の信頼性評価の合理性を効果的に向上し,複雑なシナリオにおける分類決定問題に特に適している。
論文 参考訳(メタデータ) (2024-10-30T08:05:26Z) - Finite-Sample Identification of Linear Regression Models with Residual-Permuted Sums [0.0]
Residual-Permuted Sums (RPS) は Sign-Perturbed Sums (SPS) アルゴリズムの代替であり、信頼性領域を構築する。
RPSは、サインを摂動させる代わりに残基を摂動させる。
これらの置換に基づく信頼領域が一般仮定の下で一様に一貫したものであるという最初の証明を提供する。
論文 参考訳(メタデータ) (2024-06-08T11:09:30Z) - Critic-Guided Decision Transformer for Offline Reinforcement Learning [28.211835303617118]
CGDT(Critical-Guided Decision Transformer)
決定変換器の軌道モデリング機能を備えた値ベース手法からの長期的な戻り値の予測可能性を利用する。
これらの知見に基づいて,提案手法は,値に基づく手法からの長期的なリターンの予測可能性と,決定変換器の軌道モデリング能力を組み合わせた新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-21T10:29:17Z) - Diagnosing and Rectifying Fake OOD Invariance: A Restructured Causal
Approach [51.012396632595554]
不変表現学習(IRL)は、不変因果的特徴から環境から切り離されたラベルへの予測を促進する。
最近の理論的結果は、IRLによって回復されたいくつかの因果的特徴は、訓練環境ではドメイン不変のふりをするが、目に見えない領域では失敗する。
本研究では,RS-SCMに関する条件付き相互情報に基づく手法を開発し,その効果を巧みに補正する。
論文 参考訳(メタデータ) (2023-12-15T12:58:05Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
逐次決定問題は、予測状態表現(PSR)によってモデル化された低ランク構造が認められる場合、統計的に学習可能である
本稿では,推定モデルと実モデル間の全変動距離を上限とする新しいボーナス項を特徴とする,PSRに対する最初のUCB型アプローチを提案する。
PSRに対する既存のアプローチとは対照的に、UCB型アルゴリズムは計算的トラクタビリティ、最優先の準最適ポリシー、モデルの精度が保証される。
論文 参考訳(メタデータ) (2023-07-01T18:35:21Z) - A robust method for reliability updating with equality information using
sequential adaptive importance sampling [8.254850675268957]
信頼性更新(Reliability update)とは、ベイジアン更新技術と構造的信頼性解析を統合した問題である。
本稿では,逐次重要サンプリングとK平均クラスタリングを組み合わせたRU-SAISという革新的な手法を提案する。
その結果, RU-SAISは既存手法よりも精度が高く, 堅牢な後方故障確率推定が可能であることが示唆された。
論文 参考訳(メタデータ) (2023-03-08T12:55:40Z) - Variational Voxel Pseudo Image Tracking [127.46919555100543]
不確実性推定は、ロボット工学や自律運転といった重要な問題にとって重要なタスクである。
本稿では,3次元物体追跡のためのVoxel Pseudo Image Tracking (VPIT) の変分ニューラルネットワークによるバージョンを提案する。
論文 参考訳(メタデータ) (2023-02-12T13:34:50Z) - Posterior sampling with CNN-based, Plug-and-Play regularization with
applications to Post-Stack Seismic Inversion [0.0]
不確かさの定量化は、反転結果に関する貴重な情報を提供することができるため、逆問題に不可欠である。
本稿では,CNNに基づくデノイザを用いて,Kulback-Leibler分散損失を暗黙的に正規化することにより,後部推論を行うフレームワークを提案する。
我々はこのアルゴリズムをPlug-and-Play Stein Vari-SVGDと呼び、高解像度で信頼性の高いサンプルを作成する能力を示す。
論文 参考訳(メタデータ) (2022-12-30T08:20:49Z) - Error-based Knockoffs Inference for Controlled Feature Selection [49.99321384855201]
本手法では, ノックオフ特徴量, エラーベース特徴重要度統計量, ステップダウン手順を一体化して, エラーベースのノックオフ推定手法を提案する。
提案手法では回帰モデルを指定する必要はなく,理論的保証で特徴選択を処理できる。
論文 参考訳(メタデータ) (2022-03-09T01:55:59Z) - Rethinking Transformer-based Set Prediction for Object Detection [57.7208561353529]
実験の結果,提案手法は元のDETRよりもはるかに高速に収束するだけでなく,検出精度の点でDTRや他のベースラインよりも優れていた。
論文 参考訳(メタデータ) (2020-11-21T21:59:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。